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Abstract

A distributed ISA bus network using FPGAs and LVDS
links

Johan Johansson

This master thesis describes the design of a distributed network with the purpose to
evolve into a complete test system to test motherboards and similar units. The
network encapsulates signals from an ISA bus and distributes it through a LVDS link.
The LVDS network distributing the ISA bus protocol is supposed to run several
meters and consist of several slave nodes testing the interfaces of the motherboards.
The logic in this design is successfully implemented by the use of Field Programmable
Gate Arrays (FPGAs). The advantage of using FPGAs is that they are easily configured
and that they support LVDS on chip. LVDS is a differential signalling standard that
support high throughput while it consumes low power.

The result of this work is a design that supports the protocols ISA, RS232 and I12C.
The nodes in the network also consist of simple digital inputs and outputs. These are
directly accessed through the ISA protocol.

The network design is built in 2 modular manner that makes it very easy to add more
registers and protocols. This quality will play an important role when expanding the
features of the network. If a protocol has to be added, a module supporting this
standard is programmed. Then the module is added to the main logic via internal
registers, all accessed via the ISA bus. The strong features in this distributed network
design is the flexibility using modules, the support of high speed and the great
configurability of the FPGAs.
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Chapter 1 — Introduction

This master thesis describes the implementation of a data network that encapsulates and distributes the
ISA busII protocol by the use of a LVDS' link. The hardware logic in this network consists of Spartan 3
FPGASs".

This work has been performed at Hectronic AB in Uppsala, Sweden. Hectronic AB is the leading
Swedish embedded ICT technology supplier and develops small PC-cards. Several of these small PC-
cards follow the PC/104 standard and may for example have integrated LCD graphics, serial ports,
USB support, disk interface and 10/100Mbit Ethernet. These cards are widely used by the industry,
where their small size is a big advantage for built-in applications. Figure 1-1 shows the PC/104 card
H6026 Pentium 111 produced by Hectronic AB.

At different development stages these PC-cards have to be tested. The purpose of the test system is to
test a PC-card as thoroughly as possible and generate a diagnostic report. The present test system has
shortcomings and has to be improved in several ways. The motivation for this thesis is to improve the
present test system.

90 mm

L Tsase “
Y

i T ol PR L
LE L i

Figure 1-1: PC/104 CPU Board - H6026 Pentium 11 with the size 90x96 mm.

1.1 The present test system

When the PC-card powers up the BIOS code first runs a series of diagnostic routines called POST"". It
tests CPU, memory, keyboard, floppy and other basic functions. At the start of each routine the BIOS
sends data to port 80" that indicates what routine is being run. These codes are usually also sent via a
serial port and if the POST-test stalls, the latest written code to port 80 will show which test went
wrong.

' Low Voltage Differential Signalling.

"' Field Progammable Gate Array.

"' Power On Self Test.

"V'Port 80 is a hexadecimal data address on the ISA bus.



After the POST-test, an operating system is loaded and started. The operating system will perform a
series of peripheral tests of chosen ports and buses on the card. Several different tests may be
performed when the operating system has been loaded. The result is reported back to the host
computer' via the serial port.

1.1.1 Problems with the present test system

One problem with the present test system is that it takes rather long time to load the operating system
onto the board so that more advanced tests can be performed. Another delay is when the VGA bus is
tested. Here, a LCD display is connected to the bus and the test personnel controls if the LCD display
looks ok. If this control would be automatic, even more time could be saved. Also, more specified
error reports are desired when an error is found. This is to be able to pinpoint the error source as fast as
possible.

All the cases mentioned above contribute to the total test time for every board. If these problems could
be solved or minimized, test time would be significantly reduced and the test costs would be lower.

1.2 Requirements for a new test system

A small group of employees were put together to discuss a new test system. The group determined
some guideline properties needed in the test system. The directions are presented in this section.

1.2.1 The properties of the test system

The test system should have the following properties:

e Test of the test objects' peripherals: The buses and ports of the test object should be able to
be connected to the test system so that communication tests of these peripherals can be
performed.

e Fast uploading of data to the test object: To save test time, the uploading of the operating
system from the host computer to the test object has to be fast. 1 Mbyte/s and faster was
estimated to be sufficient.

o Flexibility: The test system should be able to be reconfigured to support other peripheral tests
to update possible programming errors in the existing code. The test system should also be
able to be expanded to test several test objects all connected to the system at the same time.

¢ Distance between two network nodes: Because several test objects might have to be tested at
the same time the network has to support distances up to about 2 meters.

e Connection wiring: To connect the network a small bus of a maximum width of five wires
are required. This is to make the test system able to be modified into other small future
applications.

e Supply voltage: The five available wires should carry supply voltage for the distributed
system nodes as well. This is not necessary for the test system, but is required in some
applications planned for the future.

e Cost: The logic chosen should be low cost.

' The host computer is the main computer coordinating the test.
"' The test object is the fabricated circuit board that is to be tested.



1.2.2 Different test situations
There are several test situations to be considered. These are summarised below:

e Lab test: During the design and development of a card, different tests of the card should be
performed.

e Function test: This test is made after the final assembly of the cards. If the card passes this
test, it should be fully functional.

e Temp test: Here the card is tested at different temperatures. The card functionality is tested
while it is exposed to different temperatures in a special designed temperature box. To save
testing time several cards need to be tested in the box at the same time. This demands the test
system to support several cards to be connected simultaneously.

o Field test: If an error occurs after delivery, it is a big advantage if the card could be tested “in
the field” by the customer.

1.2.3 Test system architecture

The test system should consist of one host computer running the main test program coordinating the
tests. The host computer should be able to upload program code to the test object(s) via the test
system. The host computer should also be able to communicate via the test system to the peripherals
of the test object.

After performing the test, it would be an advantage if the host computer could report the result to a
data server logging all the tests.

1.3 The aim of this project

The aim of this project is mainly to develop a distributed system suitable to handle the communication
between the host computer and the test object(s) and its peripherals. The problems with the present
system and the requirements of a new system should be considered in the new design.

1.4 Method description

The implementation of the logic is to be done on a suitable CPLD'/FPGA. The proper CPLD/FPGA
has to be chosen and suitable programming technologies in the device have to be investigated. The
programming language used to design the logic is VHDL.

Because a new distributed network has to be designed, suitable system topologies and channel
configurations has to be investigated as well.

' Complex Programmable Logic Device.
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Chapter 2 — Background

This chapter introduces the technologies used in the distributed network design. It also forms a basis
for the decisions made in section 3.1. This chapter could be used as a reference when different
implementations, using these technologies, are described in other chapters.

2.1 The OSI seven-layer model

OSl' is a standard reference model of the communication flow between two end users in a network.
The International Organization for Standardization developed OSI in 1984 and it describes a
framework for implementing network protocols in seven layers. The OSI seven-layer model is a part
of this standard and is a useful reference model for describing and designing computer networks.

The OSI seven-layer model consists of seven layers that data has to go through to travel from one user
to another. Control is passed from one layer to the next and each layer uses the functions of the layer
below and only exports functionality to the layer above. The data-flow starts from the application layer
in one station and proceeds to the bottom layer. There it passes over a channel and travels back up in
the layer hierarchy in another station. The seven layers are shown in Figure 2-1 and are briefly
described below [1]:

o Layer 7 — Application: This layer interacts with the application and supplies network related
activities such as file transfers.

o Layer 6 — Presentation: This layer is usually part of an operation system and converts
incoming and outgoing data from one presentation format to another. For example it could
convert a data steam into a popup window displaying some information.

e Layer 5 - Session: Establishes, maintains and ends communication with the accessed device.

e Layer 4 — Transport: Ensures a complete data transfer. For example by performing error
checking and controlling that all the packages has arrived.

o Layer 3 — Network: Network data routing and flow control. The way the data is to be sent is
determined in this layer.

e Layer 2 — Data link: Describes the logical organisation of data bits transmitted, such as
framing, addressing and error checking. Error checking may occur in a higher layer as well.

e Layer 1 — Physical: Describes the physical hardware properties of the channel such as
connectors, voltage levels and timing.

Application

. Presentation g
Session
. Transport g

Application set

Network Transportation set

Data link
Physical

Figure 2-1: The seven-layer OSI reference model.

' Open System Interconnection.
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2.2 Backplane architecture

A backplane is used to join several peripherals together. The VME, PCI and ISA buses are examples
of protocols using backplanes. A backplane set-up could for example be a microprocessor
communicating with memory, keyboard, mouse and soundcard devices. The need for backplane
performance has always been high. The maximum number of cards connected to one segment', data
path width, hot-swap" capabilities and low cost are concerns to have in mind when designing a high
performing backplane. In this section, some important design methodologies are explained [2].

2.2.1 Connectivity

Backplane connectivity refers to how the drivers and receivers are connected. There are two
commonly used transmission schemes today, serial and parallel.

2.2.1.1 Parallel design

In this design, the bits are sent from the driver in parallel. All the information sent in the backplane is
configured either as multipoint or multidrop [2].
The advantages of a parallel design are summarised below:

¢ Individual lines can be used as control signals with fast reaction times.
¢ High data throughput can be achieved with low signal speed.
o No extra logic is needed to serialise and deserialise the data blocks. This means no time delay.

The disadvantages of a parallel design are:

e Many data traces are needed. This means lots of space on the circuit board and high costs.
e The signal skew between the signal lines has to be matched.
¢ Impractical when going between units at long distances.

2.2.1.2 Serial design

In a serial design the data is sent in a serial bit-stream using one single transmission line. All the
communication is made point-to-point [2].
The advantages of a serial design are summarised below:

o No signal skew problem between the signal lines. Only the skew in the individual pairs in a
differential transmission line has to be matched.

e The transmission speeds in different data lines are adjustable giving support for longer cable
lengths.

e Only a few signal traces are needed which significantly reduces the space occupied on the
circuit board.

The disadvantages of a serial design are:

e Addelay is introduced to serialise and deserialise data blocks.

o Serial devices are usually more expensive than parallel drivers.

e Higher speed is often needed to compensate for fewer lines. This demands better impedance
matching and trace layout.

' The segment is the continuous traces on the circuit board that joins the peripherals.
" Hot-swap is the ability to remove and plug-in a card on the backplane while having the components turned on.
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2.2.2 Timing architecture

The timing architecture refers to how the bits in a data block are synchronised. There are many ways
to do this and timing architecture plays a big role in the resulting data-rate.

2.2.2.1 Synchronous clock

This design is a synchronous timing architecture and has only one clock source and the data is
synchronised with this clock. The routing of the clock is done so that all the peripheral cards receive
the clock at the same time as shown in Figure 2-2. Because the data lines are driven by a source in
every peripheral card, the data paths can not be adjusted to solve for data delay. This delay issue
makes this architecture not suitable for high data-rates.

Careful layout to minimise the clock skew is critical for this type of design. When this is done, the
platform will be robust and effective.

Data bus

Card 1 Card 2 Card 3 Card 4
FAY FAY Fal Fal

Clock M M‘J

generator

Figure 2-2: Synchronous timing architecture using only one clock generator.

2.2.2.2 Source synchronous clock

In this design, every source generates a clock that travels in parallel with the data to the receiver. This
is shown in Figure 2-3. Note that only the clock signal from card 1 is shown even though all other
cards has clock lines to all other receiving cards. The clock and the data line have to be the same
length and have the same loading. This is to ensure that the data and the clock signals will arrive at the
receiver with no skew between each other. Because the data and clock signals are matched to
minimise the skew, this design will support much higher data speeds compared to the synchronous
clock design. The design also has potential for bigger networks because the skew between clock and
data does not increase as much as for the synchronous clock design. The drawback is that many clock
signals are needed — one set for every pair of data-linked devices. This will consume much space on
the circuit board as the number of cards increase.

Data bus

clk clk v clk v

\"4 v Vv
Card 1 Card 2 Card 3 Card 4

Figure 2-3: Source synchronous clock design (showing clock signals from card 1 only).

2.2.2.3 Asynchronous system

An asynchronous system does not use a clock. The communication between devices is made by the
use of control signals also called “handshaking”. For example, the transmitter uses one signal to tell
the receiver that data is ready on the bus. When the receiver has sampled the data it uses one
acknowledge signal to tell the receiver that data was received.

Often asynchronous designs are very solution specific and are usually designed uniquely for each
implementation. One advantage of this design is that it does not have clock timing problems. It is also
more power efficient because it does not have a constantly running clock signal. One drawback is that
it is only efficient over short distances.
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2.2.2.4 Embedded clock

Embedded clock or CDR' is a design method that has become more popular in recent years. In this
design you send only one bit stream and the receiver unfold the data bits without the use of a parallel
clock signal sent with the data.

The method needs the data to be encoded in a special way so the clock is included in the bit stream.
There are several ways to do this. Some of the codes used are briefly explained below [3]:

e Manchester encoding: This encoding is commonly used and one application is for example
the data coding in Ethernet. The method encapsulates the clock in the data by sending the
zero-bit as a positive signal edge and a one-bit as a negative signal edge. In this way the
receiver can easily figure out the centre of each bit. It is at every edge of the received signal.

e 8B/10B: Gigabit Ethernet and fibre channel use this coding technique. It is a coding
technique, which for every 8 bits of data sends a 10-bit code. This code has the property
consisting of either 4 zeros and 6 ones, 5 zeros and 5 ones or 6 zeros and 4 ones. This will
give the code the ability to send equally many zeros as ones to generate a DC-balanced signal.
The clock can be deduced from this code and it guarantees that only a maximum of five zeros
or ones are sent in a row. Usually this code is implemented in hardware using look-up-tables
(LUTSs).

Extraction of the clock from the Manchester code embedded clock signal is done by the use of a
DPLL". Because the signal contains a high and constant rate of bit transitions, the DPLL can lock on
to this frequency and generate the clock signal.

To extract the clock from 8B/10B signal a DPLL is also used. By tracking the changes in the bit
pattern a clock signal from the DPLL can be generated in the same way as for Manchester encoding.
To use an embedded clock design a constant flow of bit-patterns to lock on, has to be sent. If the
DPLL has to reacquire lock over and over again, this will significantly slow the bus down. Sending bit
patterns that the DPLL could lock on to, even if there is no actual information contained in them,
solves the problem.

2.2.2.5 Signal path delay
A signal propagates in a twisted pair cable with a speed of about v=0.6-c=
0.6-3-10°=1.8-10° % [4]. For a clock signal with a frequency f = 100 MHz the wavelength would

8
be 1= % = % =1.8 m. If we estimate that, a data signal is allowed to have a maximal skew of
1/20 of a wavelength to be received with high accuracy. Then the maximum length difference between

1.8m

two twisted pairs could be =0.09 m=90 mm.

It thus follow that the maximum length difference allowed for a 200 MHz clock transmitted in a
twisted pair would be about 45 mm.

These calculations show the maximal skew allowed in the circuit design. All cables, connectors and
traces have to be included in the total channel length.

' Clock Data Recovery.
"' Digital Phase Locked Loop.
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2.2.3 Data distribution topologies

Data can be distributed in many ways. The three most common topologies are summarised below:

e Point-to-point: This topology has the highest data speed and is the most common and basic
bus topology. The transmission of data is over one channel between two nodes. If the nodes
consist of transceivers, the configuration is called half-duplex point-to-point. If the data is
transmitted only in one direction, from the transmitter to the receiver, the configuration is
called simplex point-to-point.

e Multidrop: In this topology there is one transmitter and several receivers. The
communication is made over one single channel.

o Multipoint: This topology consists of several transceivers sharing one channel. Each
transceiver is able to communicate to either of the other transceivers. The possibility that
several of the transceivers transmit data at the same time has to be taken care of. Only one
transmitter is allowed to transmit at a time.

More information about the differential configuration of these topologies is found in section 2.5
describing LVDS.

2.2.4 Single-ended versus differential signalling

A single-ended channel consists of only one wire or trace that carries the signal. The signal level is
transmitted and received using one common ground. The advantages of single-ended signalling are
easy implementation, low cost and few components. The disadvantage is its sensitivity to noise and
that it can not travel far due to degradation.

A differential channel uses two wires or traces — one signal and its complement. It is the difference
between the signal levels that carry the information. The advantages of differential signalling are that
it has high noise rejection and supports long cable lines. The disadvantages are that it is harder to
implement and the components needed cost more than for single-ended designs. More information can
be found in section 2.5 describing LVDS.

All three topologies point-to-point, multidrop and multipoint can be implemented with either
differential or single-ended signalling.

2.2.5 Power over Ethernet

Power over Ethernet (PoE) is a technology that makes it possible to supply power to a device using the
same wires as for transmitting the data. The data is sent using a differential standard and two or four
differential pairs. Power over Ethernet provides as much as 13 watts (using 48 volts) to the devices
[5]. Adding a DC voltage between two differential pairs transmits the power. At the receiver the DC
voltage is used for power supply and the low differential signals are used to transmit the data.
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2.3 FPGA technology

To communicate with the host computer and to distribute the data through the test system, the Xilinx
FPGA Spartan 3 was chosen. The code for the Spartan 3 chip was developed and compiled using the
Xilinx ISE WebPACK 7.1i software. The design code is usually either programmed using VHDL
directly, pregenerated by IP-cores' or with the schematic editor in the ISE software. The architecture
of the FPGA, the design flow using the software, the VHDL language and some high-speed
applications are explained in this chapter.

2.3.1 FPGA introduction

FPGA stands for Field Programmable Gate Array and is a programmable chip that has many
advantages over ordinary logic [6]. The chip is usually equipped with hundreds of thousands of logic
gates that can be connected to each other. By programming the connection between the logic gates
very complex logic can be created. A complete high performance CPU may for example be
implemented in a small part of a chip.

The FPGA chip gives the opportunity to program logic that runs in parallel. In an ordinary
microprocessor, the CPU processes the programmed instructions in the memory sequentially. This is a
disadvantage if the problem-solving algorithm is able to run in parallel. In a FPGA chip thousands of
logic structures may run completely separated and their processed data may be joined together in a
final stage. By programming the logic in parallel, the data processing performance can be significantly
increased.

The logic in the FPGA is also highly flexible and does not occupy more space than needed. The static
structure of an ordinary 32bit ALU forces it to operate using 32 bits data registers even if only a few
bits are actually carrying information. The flexible structure of an FPGA makes it possible for the
logic not to be bigger than necessary. For example, if the logic operates on 5 bits of data only a 5-bit
register is used.

The FPGA chip has many built-in features such as clock dividers, phase shifters, multipliers and
support of several different I/O-standards.

The parallelism and the flexible logic bring the FPGA chip tremendous speed and applicability. In
image-processing or data encryption applications, the speed may be 100 times faster for an FPGA than
for a CPU.

2.3.2 The Spartan 3 FPGA

The Xilinx Spartan 3 XC3S200 FPGA chip [7] is chosen for this project because it has many useful
features and is low cost. Some of the Spartan 3 XC3S200 features are presented below.

o Distributed logic: The FPGA holds 4,320 logic cells and 200,000 system gates.

o Embedded multipliers: The FPGA has 12 embedded multipliers capable of multiplying 18-
bit wide registers.

¢ Block RAM (BRAM): The FPGA has a total of 216 Kbits of Block RAM.

o Digital clock managers (DCMs): Four DCMs are distributed in the chip to support multiple
system clocks. They also support clock skew elimination, high-resolution phase shifting and
frequency synthesis.

e 1/O banks: Eight 1/0 banks support 24 1/O standards including LVDS.

" Intellectual Property Cores.
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2.3.2.1 Internal logic architecture

Figure 2-4 below shows the basic internal structure of the Spartan 3 FPGA.

The Configurable Logic Blocks (CLBs) make up the main logic resource for the FPGA. Every CLB
consists of four Slices for implementing synchronous as well as combinatorial circuits. The Slice
consists of the basic logical building blocks such as arithmetic gates, storage elements, carry logic and
lockup tables (LUTS).

The Input/Output Block (I0B) is the link between the internal logic in the FPGA and the 1/0 pin. Each
IOB is bi-directionally programmable and supports several 1/0 standards.

By combining the logic elements within the slices in the CLB and by combining the CLBs with
BRAM, 10Bs and multipliers, very complex logic may be constructed.
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Figure 2-4: The internal logical structure in the Spartan 3 FPGA.

2.3.2.2 The global clock network

Eight global clock lines called GCLKO - GCLKY7 are distributed in the device. This network connects
clock signals from the input pad to the internal logic. The DCMs are also connected with this network
and are able to generate new phase shifted or multiplied clock signals driving different internal logic.
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Figure 2-5: The distributed clock network in the Spartan 3 FPGA.

2.3.2.3 The Digital Clock Manager (DCM)

The DCM is able to generate a wide range of clock frequencies and is able to phase-shift the output
signal with respect to the input signal. As shown in Figure 2-5 [8] only four clock signals may be
distributed from the DCM using the high quality global clock network.
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Figure 2-6: The internal logical structure of the DCM in the Spartan 3 FPGA.
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In Figure 2-6 the DCM logical structure is shown. Some of the signals are explained below:

e RST, Locked and CLKFB signals: RST is the reset signal and forces the DCM to reacquire
the lock on the input signal. The locked signal is asserted when the DCM has locked on the
input signal and the output signals are accurate. The CLKFB signal is for feedback so that the
output signals gets the chosen phase shift.

e 270, 180, 90 and 0 degrees phase shift: The DCM can be configured to produce four
simultaneous output clocks phase shifted 270, 180, 90 and O degrees with respect to the input
clock. These signals may be used in data transfers using DDR' with a separate clock line (for
more information see the DDR section below). The drawback of this configuration is that the
clock rate cannot be multiplied. If the input clock is 50 MHz the maximum data rate is 100
Mbps using DDR.

e CLKFX and CLKFX180 with arbitrary phase shift: If CLKFX and CLKFX180 are used;
an input clock signal faster than 48 MHz may generate a clock signal and its inverse of a
maximum frequency of 280 MHz. An arbitrary phase shift can be applied as well.

o CLK2X and CLK2X180 with arbitrary phase shift: Works as CLKFX and CLKFX180
above but are only available up to a maximum frequency of 210 MHz.

e CLKDV with arbitrary phase shift: CLKDV is used to divide the clock signal. The division
value can be chosen in several stages from 1.5 to 16. An arbitrary phase shift can be applied as
well.

DCM lock time

The time it takes for the DCM to lock on to a clock signal and generate the output clocks is essential to
know for some special designs. If the master node in the distributed network has to reacquire the lock
on the clock signal sent from the slave at each data transmission, this time will contribute to the
resulting data transfer rate. In some applications, the data is sent in parallel with the clock on two
different wires. If the clock frequency is higher than about 100 MHz, the clock might disturb other
component on the circuit board [9]. To solve this problem a clock at a lower frequency is transmitted
and then multiplied in a DCM to achieve the wanted clock frequency. The data is then sampled at the
new higher clock rate.

The Figure 2-7 shows the functional simulation of a DCM with an input frequency of 50 MHz and two
outputs of 200 MHz where one of them is shifted 180 degrees. The Figure 2-8 shows the post-place
and route simulation of the same design. If one considers only the functional simulation, the generated
clkO and clk4x signals are in phase with the input signal clkin. If this would be accurate for the final
hardware communication, the method of sending a slower sampling clock would work fine. If one
consider the post-place and route simulation this would not work because the sent clock clkin and the
generated clock signals are not in phase.

According to [10] the maximum lock time at an input clock frequency of 50 MHz is about 1 ms.
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Figure 2-7: The functional simulation of a DCM. 50 MHz input frequency and 200 MHz output frequency.

' Double Data Rate.
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100 ns

Figure 2-8: The post-place and route simulation of a DCM. 50 MHz input frequency and 200 MHz output
frequency.

2.3.2.4 High speed data communication

The ability to communicate with high speed is essential in many distributed test networks. If operating
systems and test programs has to be loaded from the host computer to the test objects, much testing
time will be gained in having a fast network. FPGAs have many ways to generate high-speed data and
clock output signals.

Double Data Rate (DDR)

DDR is a method to send data at twice the rate of the clock. The method uses both the positive and the
negative flank of the clock. A DDR MUX' according to the Figure 2-9 switches the data from two
flip-flops. The flip-flops triggers on clock signals phase shifted 180 degrees from each other. For the
best result, a DCM is used to generate the two clock signals. An inverter is sometimes also used to
generate the 180 degrees phase shift of the second clock signal.
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Figure 2-9: The DDR component consisting of two flip-flops and one DDR MUX.

2.3.2.5 Serialising data at high frequencies

The logic serialising the data before the DDR flip-flops has to be very well structured and planned.
The Spartan 3 device is only of speed grade -4 and this creates problems when the logic has to be run
at high frequencies. There are two commonly used methods to prepare data. One is using two shift
registers and the other one uses two multiplexers. Both techniques are explained below.

' Double Data Rate Multiplexer.
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Preparing data using multiplexers

The design in Figure 2-10 shows how data is serialised and sent along with clock and framing signals
[11]. The framing signal is in this example used to signal to the receiver when the data package starts
and stops. The output clock is sent at four times the internal clock frequency. Because the use of DDR
the data bits will be sent two times the clock output frequency and eight times the internal clock
frequency.
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Figure 2-10: This schematic shows two muxes serialising the data to the DDR component.

The logic above transmits 8 bits at a time and for this purpose the MUX arrangement works fine. If
more bits are to be sent at a time, the maximum frequency allowed in the design will be lower. This is
because bigger MUXES have to be used.
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Figure 2-11: Library Component M4_1E (4:1 MUX) implemented in a Spartan 3 FPGA.

Figure 2-11 shows a 4:1 MUX implemented in a Spartan 3 FPGA [12]. The 4:1 MUX is built of three
2:1 MUXES and each data signal has to pass two MUXES. If for example 32 bits of data are to be
sent, two 16:1 MUXES are used. This means that the data signal has to pass four MUXES.

The conclusion is that it is not appropriate to serialise data using MUXES if many bits at a time at
high bit rates are to be transmitted.

Preparing data using shift registers

The design in Figure 2-12 shows how data is serialised using two shift registers [13]. The shift
registers (named PISO) take turn in presenting the data to the DDR module named DDRFD. The data
and the clock are in this design sent in parallel using two LVDS pairs.
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Figure 2-12: This schematic shows two shift registers serialising the data to the DDR component.

At high frequencies the shift registers handles large data blocks more efficient than the MUXES in
Figure 2-10 above. The shift register is implemented using flip-flops as shown in Figure 2-13.
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Figure 2-13: A 4-bit shift register implemented in a Spartan 3 FPGA.

Because of the pipeline structure of the logic, the maximum frequency limit is not dependent of the
number of bits in the input block.

The conclusion is that shift registers are the right design implementation to serialise big blocks of data
at high frequencies.

2.3.3 VHDL

VHDL is a very powerful hardware description language. It is used to specify, verify and construct
electronic logic circuits. VHDL was demanded by the US Department of Defence in the beginning of
the 1980s to describe the behaviour of the ASIC chips in their equipment. Later that decade the
language was used to describe circuit models in simulation tools. A few years later the VHDL-
standard was used in electronic constructions.

The advantages of VHDL over traditional schematic circuit designs are shorter development time and
easier maintenance [14]. Because VHDL is a standardised language, it is easy to transfer the code
between different development tools. Unfortunately, VHDL is not standardised for construction
(synthesis). This means that it is harder to transfer code for construction between different
development tools. If the construction code is supposed to be transferred, the code has to be written in
a common agreed manner accepted by the different tools. Luckily, this is easily done for the most
frequent designs.

Another problem with transferring the code is that many components only exist in the used device.
This code may not be transferred to a device not supporting the component. Some example of such
components in the Spartan 3 FPGA is the DCM, the DDR-block and the LVDS driver.

2.3.4 Schematic capture

Many development tools include a schematic editor. This editor is a very useful tool when used
together with modules written in VHDL. Even though a complete design may be constructed only
using the schematic editor, it is often not recommended. Some designs may be very hard to implement
using the schematic editor but very easily implemented using VHDL.
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A good reason to use the schematic editor is the good overview of the design. Some components like
the DCM can be implemented here because they do not benefit as much from the VHDL transfer
ability. Small parts of a design, not using any device specific components benefit, a lot on the other
hand, by being written in VHDL. The different modules are easily combined in a schematic editor and
you get a good overview of the complete design. If the modules are joined only in VHDL, the whole
design is often harder to grasp.

2.3.5 Xilinx ISE 7.1i — design flow

Xilinx ISE 7.1i is an all in one package that integrates the tools needed through all the common design
steps [15]. Third party tools can also be integrated for more advance simulation and synthesis. In this
section, the design flow shown in Figure 2-14 below will be explained.

Implementation Verification
Design Entry 5: VHDL simulation
VHDL-code i : using ModelSim
Schematic design [ T~~~< i :
IP-Core P Tl :
17==» Functional
¥
Synthesis
Xilinx XST

User constraints
Package pin assignment
Area constraints
Timing constraints

-

-

_» Posttransiate

_» Post-map

v ! .-~ _.r~"__|» Post-place and route
Design implementation - T

Mapping e.';‘"’:'/

Placing e -+  Timing analyzer

Routing

¥ Hardware debugging
Hardware download | __ _ __ . _ oot —=9 Oscilloscope
Xilinx IMPACT Communication test

2.3.5.1 Design Entry

At this stage, the designer describes the design. This is done usually in the HDL editor and the
schematic editor. Already invented designs called Intellectual Property (IP) Cores are also put into the
design here. The VHDL code is written in the HDL-editor or in an ordinary text editor. VHDL code is
also generated from the schematic design in the schematic editor.
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2.3.5.2 Designs synthesis

The synthesis tool uses the described design in the VHDL-files to decide which components to use
and to generate the net list. The net list describes how the components are interconnected. It is
important that the synthesis tool generates a good design. Xilinx ISE provides its own synthesis engine
(XST). For an even better result a third party synthesis engine is also possible to integrate in ISE at
this stage.

2.3.5.3 Design implementation

e Mapping: Uses the logic description from the synthesis and maps the logic to the logic cells,
1/0O cells and other components in the FPGA.

e Placement: Decides where the components from the mapping should be placed in the FPGA.

¢ Routing: Decides how the placed components should be interconnected.

2.3.5.4 Design verification

After place and route, timing analysis can be made in the timing analyser tool. Here you can see if
your timing constraints have been met. The timing analyser also displays pad-to-pad delays.

The design can also be simulated in different stages. After the design entry stage a behavioural
simulation can be done. Here you see how the code would work if no wire and components delay
existed.

After place and route the most complete simulation can be done. Here the construction is simulated
with component and wire delays. Because of the wire delays, the final layout strategy is very
important. That is why modern FPGA designs are constrained in the place and route level rather than
in the logic block level.

A behavioural model simulator is already included in the ISE package. For more advanced simulations
a third party simulation tool has to be used. In this project the Mentor Graphics ModelSim XE
I11/Starter 6.0a is used.

2.3.5.5 Hardware implementation

After place and route a programming file with the configuration bits for the FPGA is generated. The
Xilinx IMPACT tool is used to transmit the bits to the FPGA. Because the FPGA does not retain data
after power shut down, a Flash EPROM can be used. In the Spartan 3 Starter kit development card and
on the Hectronic H4070 heat test card, both the Flash EPROM and the FPGA is programmed via a
JTAG-chain [16]. The data from the IMPACT tool is sent to the JTAG-chain via the parallel port of
the PC.

2.4 The ISA bus

2.4.1 Introduction

The ISA bus is a very old computer bus that has been very common in the PC world. IBM developed
it in 1981 and in 1984 it was expanded into a 16-bit bus. Some advantages using the bus are that it is
very easy to implement and that there are many peripherals supporting it. The disadvantage is that the
bus is slow. Even though the bus is 16 data bits wide, it only has a maximum speed of 15.9 Mbytes/sec
in 16-bit mode and 7.9 Mbytes/sec in 8-bit mode. But if the application does not demand speed, the
ISA bus might be the best choice.

The ISA bus is still used in many applications such as in digital and analogue 1/0O cards and in the
famous PC/104 cards.
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2.4.2 ISA bus device communication

The ISA bus is asynchronous and can address I/O and memory devices. The bus also supports
interrupts and DMA.
In this section the communication between the microprocessor and the 1/0 device is briefly explained

[17].

Usually a microprocessor is the master in the bus structure. The I/O devices are slaves. In an ordinary
I/0O device access the master directs the communication. The slave has the ability to shorten or
lengthen the bus cycle. The following signal lines are used in this project:

BCLK: This is the bus clock usually at a frequency of 8.3 MHz. In other words, there are 125
ns between two successive rising edges on the clock signal.

SBHE#: When SBHEH# is asserted the microprocessor is doing a 16-bit access. Otherwise, it
is doing an 8-bit access.

SA(19:0): 20 address bits are used to address a memory device. Only 10 bits are used to
address an 1/0 device.

BALE: When this signal goes low it tells the device that the address bits SA(19:0) are
latched and can be read.

1016#: When this signal is asserted the device tells the microprocessor that it is capable of
handling a 16-bit access.

IORCH#: When asserted it signals to the device that a read access is being made.

IOWCH#: When asserted it signals to the device that a write access is being made.

NOWS#: This signal tells the microprocessor that no wait state is needed.

CHRDY: This signal tells the microprocessor to insert wait states.

SD(15:0): These are the data bits. Only the lower 8 bits are used in an 8-bit access.

The 8-bit access is explained in the sequential list below and the numbers in Figure 2-15 corresponds
to the numbers in the list. A more detailed and complete description of the access can be found
elsewhere [17].

1.

2.
3.

e

The microprocessor starts by putting the address to be read from or written to on the address
lines SA(19:0). The SBHE# state is also asserted at this time.

The BALE signal is deasserted by the microprocessor.

The microprocessor asserts the IORC# for a read instruction or the IOWC# for a write
instruction.

The 1016# is sampled deasserted.

If NOWS# and CHRDY is sampled asserted by the microprocessor the bus cycle end on the
next rising edge of BCLK. At this time, the device can read the data on the bus if the access is
a write cycle.

If CHRDY is sampled deasserted by the microprocessor, it will insert wait states to postpone
the ending of the bus cycle till the CHRDY is sampled asserted.

If CHRDY is not sampled deasserted and NOWS is not sampled asserted the bus cycle will be
terminated after four wait states.

If the access is a read cycle, the microprocessor will read the data put on the bus by the device.
This is done at the rising edge of BCLK at the end of the bus cycle.

The microprocessor asserts BALE and a new bus cycle can be started at the next rising edge
of BCLK.
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Figure 2-15: ISA bus access to a standard 8-bit 1/0 device.

The 16-bit access is made as shown in Figure 2-16. The difference from the 8-bit access is that all of
the 16 data bits are used and the bus cycle is normally terminated earlier (if CHRDY is not sampled
deasserted). NOWS# is never used in a 16-bit access and the 1016# signal is sampled asserted instead

of deasserted [17].
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Figure 2-16: ISA bus access to a standard 16-bit I/O device.
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2.4.3 ISA bus interrupt signalling

An interrupt on the ISA bus is when a device needs service from the microprocessor. To generate an
interrupt request the device generates a positive flank on its interrupt line. To generate an interrupt the
device could for example let its interrupt line be pulled high in normal state. When the device needs
service from the microprocessor, it drives its interrupt line low. Shortly after that the device releases it
and the signal will be high again because of its pull-up. The microprocessor will notice the positive
flank and service the device corresponding to that interrupt.

There are 11 interrupt lines on the ISA bus and sometimes some interrupt lines are shared among
several devices [17].

2.5 LVDS

2.5.1 Introduction

LVDS is a differential data transmission standard that started to become popular in the industry in the
end of the 1990s. It supports high-speed communication from 100 Mbps to more than 1 Gbps while it
has very low power consumption. It also has the benefits of low noise generation and high noise
rejection [18].

The reason why LVDS was invented is that better performance was needed. Other differential
standards consumed much more power and are not capable of the high data rates of LVDS. For
example, RS-422 has a power consumption of about 90 mW while LVDS only consumes about 1.2
mW. Other technologies such as RS485, ECL, and PECL also consume significantly more power. The
voltage swing of LVDS is also very small, which could be a draw back because the logic states are
harder to determine.

Considering the transfer speed, LVDS is capable of data rates of about 500 Mbps while for example
the RS-485 maximum data rate is 10 Mbps or less. The reason why the standards ECL and PECL did
not get as big acceptance was their incompatibility with standard logic levels and high chip power
dissipation [18].

2.5.2 LVDS link configurations

The configuration shown in Figure 2-17 is called point-to-point [19]. This is the most common and
basic LVDS link configuration. It transmits the differential data signal in one direction and is the best
suitable configuration for high data rates.

I I

I i

T I

I :R‘é Rev
o— |

I I

Figure 2-17: LVDS point-to-point configuration.

A 100 Q termination (R;) is needed at the receiver to avoid signal reflection. This value should
correspond to the internal resistance of the cable bus. In this and in the following configurations the
two wires are assumed to have an impedance of 50 Q.

The configuration in Figure 2-18 is called multidrop and only one termination (R;) is needed at the end
of the bus. It is important that the receivers without termination are connected close to the bus to avoid
reflections. The number of receivers can be up to about 20, depending on the transmitter driver
capacity and the line quality.
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Figure 2-18: LVDS multidrop configuration.

The multipoint configuration shown in Figure 2-19 consists of several transceivers. Each transceiver is
able to communicate to either of the other transceivers. The fact that it is two terminating resistors in
this construction the transmitter has to be able to drive more current. There are LVDS standards that
take this into account. See the sections about BLVDS and M-LVDS below.

Figure 2-19: LVDS multipoint configuration.

2.5.3 LVDS standards

2.5.3.1 LVDS

National Semiconductor introduced a standard for low voltage differential signalling in 1994. The
general LVDS standard is now defined by the industry standard ANSI/TIA/EIA-644. The standard
defines the electrical specifications including voltage levels, transmitter driver and the receiver input
characteristics [20]. The LVDS voltage levels are shown in Figure 2-20. The dotted line is the voltage
level in one of the two wires in the data bus. The continuous line is the voltage level in the other wire.
The voltage swing is typically 350 mV and the offset above ground is typically 1.25 V. The Spartan 3
FPGA uses these voltage levels in the BLVDS_25 1/0O standard as well.

125\ B P ,'

Figure 2-20: The LVDS voltage levels typically used.
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2.5.3.2 BLVDS

The BLVDS (Bus LVDS) standard was invented by National Semiconductor to solve driving
problems in bus configurations using many receivers and several terminating resistors. In the
multipoint configuration two terminating resistors are used. If many transceivers are connected to the
bus, the bus impedance will be lower. If the bus impedance is lower, a lower termination resistor is
needed. This will demand a higher current from the transmitting driver. BLVDS is defined to support
up to 10 — 17 mA driving current to solve this problem. Even more improvements are defined in this
standard and the resulting data transfer rate is in the range 200 to 400 Mbps [18].

2.5.4 Data rates supported by LVDS in different applications

The achievable bus data rate depends on many things. First of all correct termination has to be used.
The driver also has to be able to support enough current. If this is not the case, the terminating
resistance value might have to be increased as a compromise. The number of receivers and the cable
length is also vital to the resulting data rate.

For long transfers and if a CAT5 type cable is used in point-to-point configuration 100 Mbps is
achievable in a 20 m cable. If a 50 m and a 100 m cable is used a data rate of 50Mbps and 10 Mbps
respectively is achievable [21].

For short transfers on one singe PCB board the data rate may be up to 622 Mbps using a Virtex-E
FPGA with speed grade -7 [13].

For transfers over a 1.5 m PCB-trace and using the same FPGA a data rate of 311 Mbps is reliable
[22].
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Chapter 3 — The distributed ISA bus
network design

The distributed ISA bus network designed in this master thesis is described in this chapter. All the
VHDL codes and schematics were programmed by me except for three components of the RS232
controller'. No VHDL code presented in this project has been automatically generated. The described
design has been implemented using the Xilinx Spartan 3 starter kit board and the H4070 heat test
board designed by Hectronic AB. First, in the section 3.1 below, the choices of the used technologies
are discussed.

3.1 Preliminary work — designing the distributed
network

3.1.1 Main system interface

The interface from the host computer to the test system has to be fast enough to upload programs to
the test object. Because the test system has the limit of only five wires the speed of the interface does
not have to be significantly faster than the maximum speed of the test system bus. If the test system
bus has two differential channels, the bit rate would be about 100 to 800 Mbps.

The ISA bus was chosen because it supports enough speed for the applications (about 40 Mbps) and
because it is simple to implement in programmable logic. Many I/O devices support this bus and so
does the Hectronic PC/104 boards.

3.1.2 Backplane architecture

3.1.2.1 Parallel versus serial signalling

Because the thin bus structure consists of only five wires, the parallel communication would not meet
the data-rate needed. Serial signalling will therefore be implemented.

3.1.2.2 Single-ended versus differential signalling

As mentioned above, the specified bus width is only five wires. This means that a single-ended
channel does not support the data-rate needed. A differential channel is harder to implement but the
high-speed support and the good noise rejection ratio makes this the best choice.

This means that a maximum of two differential channels are available; which corresponds to a transfer
rate of about 100-800 Mbaud" depending on the timing architecture.

3.1.2.3 Data distribution topologies

Because the test system has to be able to access several network nodes and the data-bus consists of
only five wires, the multipoint topology is the most suitable one. The point-to-point topology is not
applicable because a maximum of two differential channels are available and the system has to support
several transceivers.

' The RS232 controller is designed in the UART-RE232.sch schematic on page 118. The only components not
programmed by me is the bbfifo_16x8, kcuart_rx and kcuart_tx.

"' Baud is the rate of logical changes per second in a transmission channel. Start and stop bits are included in the
baud rate even though they do not carry any data. The data rate measured in bps includes only actual data bits.
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3.1.2.4 Timing architecture

The asynchronous timing architecture does not allow sufficient data rate because a wide data bus can
not be used.

The synchronous architecture with one clock generator, in section 2.2.2.1, does not support high data
rates at long distance because the big clock to data skew. The maximum allowed path difference was
calculated in section 2.2.2.5 and limits the distance between two cards to 90 mm at 100 MHz. Because
two cards in the network could be a few meters apart, the synchronous architecture is not suitable.
Source synchronous architecture is a fast design because data and clock signals are sent in parallel
(low skew). The design in section 2.2.2.2 uses several clock lines. The wire limit only allows 2
differential channels and therefore this architecture has to be modified. The solution is to have both a
data and a clock bus. The transmitters send the data and the clock signals on two differential pairs in
parallel as shown in Figure 3-1.

Data and clock bus

A A
clk clk clk clk

1; N ::’ A4
Card 1 Card 2 Card 3 Card 4

Figure 3-1: Modified source synchronous architecture. Both data and clock are sent in parallel on the bus.

Because two differential pairs are needed in this design, power can be supplied by the use of Power
over Ethernet technique or similar.

3.1.2.5 Embedded clock - timing embedded in the data

To have the timing embedded in the data seems to be preferential. Only one differential pair has to be
used and the power supply could be transmitted in two of the remaining wires. The multipoint
topology could still be used and all the data transmissions could take place in only two wires — one
differential pair.

The big problem with this design is to overcome the difficulty of extracting the data clock and still be
able to receive the data at a high bit-rate. It is also a matter of cost. Devices handling high-speed data
with an embedded clock are rather expensive. Maybe it will not be possible to implement this design
in a low-cost FPGA. Much thought has been put into this problem but no good solution has been
found. But this design can not be ruled out completely and should be investigated further.

3.1.3 The chosen logic in the test system

The programmable logic in the test system has to support a fast differential standard. It also has to be
able to support the ISA bus standard and other bus architectures. A FPGA/CPLD is suitable for this
task. The advantage with a CPLD is that it is cheaper than a FPGA and it maintains its configuration
without the need of constant power. The disadvantage is that it contains less complex logic.

The FPGA on the other hand has support for several 1/0O-standards, phase looked loops (PLLs) and
clock multipliers. The major disadvantage is that it has to have an external Flash memory to maintain
the programming code.

The Xilinx Spartan 3 FPGA was chosen because it supports the BLVDS standard, is a low-cost FPGA,
and has digital clock managers.

3.1.4 ISA backplane design

Because the host computer will access the test system via an ISA bus, a design of an ISA backplane is
a good approach. This means that a transparent ISA bus is distributed by the test network. All of the
nodes in the network will act as an ISA bus and these can be connected to several peripheral devices at
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some distance apart. The devices should not notice any difference if they are connected to the real data
bus or one node in the distributed system. Two different ISA backplane design techniques were
thought of. These are explained below:

3.1.4.1 Continuous ISA bus distribution

In a transparent distributed backplane, the idea is that the distributed bus should act just as if it was the
system bus in the computer. This can be done by having the distributed network to continuously
sample the original computer bus. All of the distributed nodes are continuously updated. It works the
same way the other way around. The node at the device samples the signal-bits from the device and
sends update information to the master node connected to the host computer.

This solution is simple and would work fine for most devices. But it has one major problem. There
will always be a delay in the system. In the ISA bus architecture there is a signal used by the device to
postpone the ending of the bus cycle. When the device has decoded the address and need some extra
time to finish the access, it deasserts this signal (CHRDY). For a normal 16-bit access, the device has
125 ns to deassert this signal [17]. But for a distributed system the address will reach the device
delayed. Then the response from the device will be transmitted back to the master node resulting in
one more delay. If the device signals for a wait state after about 80 ns this would work fine in a normal
ISA system. In the distributed system it might not work because of these delays.

The same problem is with the 1016# signal. This signal tells the system if the device is 16-bit or 8-bit
compatible.

Giving all the devices one extra wait state can solve the CHRDY signal delay problem above. To
solve the 1016# signal delay problem one has to allow only 8-bit or 16-bit devices. If only 8-bit
devices are allowed, there will be slower transfers. If only 16-bit devices are allowed, this will
significantly limit the use of the bus because 8-bit 1/0-devices are very common.

The delay problem makes the use of this continuously distributed ISA bus method too limited. The
solution in next section is therefore chosen for this project.

3.1.4.2 ISA slave in the master node and ISA bus masters in the slave nodes

To solve the problem with the delay and to support both 8-bit and 16-bit devices this design was
chosen. The test network acts like a device (ISA slave) on the computer bus and the nodes in the
distributed network acts like a bus manager (ISA master). The distributed ISA bus architecture is
shown in Figure 3-2.

ISA computer bus

Master Node

FPGA
ISA slave

LVDS master

i

$ LVDS differential link 3
Slave Node Slave Node Slave Node
FPGA FPGA FPGA

LVDS Slavel LVDS slave |LVDS slave

I
il
[

ISA master ISA master ISA master

Distributed ISA bus Distributed ISA bus Distributed ISA bus
Figure 3-2: Distributed ISA bus network connected using a LVDS link.
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The command is put on the ISA computer by the host computer test program. If it is a write command,
the data and address bits are sampled by the ISA slave and sent to the LVDS link by the LVDS master
in the master node. All the slaves receive the LVDS data block and the device that has the matching
address will send the address, command and data bits to its ISA master.

The communication flow described above is slightly more complicated in the final system and is
explained in detail in the sections below. For information about the communication flow, please
consider the chapter about the ISA bus in section 2.4 and the LVDS master/slave protocol in section
3.3.1.

3.1.5 Conclusion

The decisions made in this chapter have resulted in a design that fulfils all the wanted properties in a
new test system. In short, the design will distribute an ISA bus via LVDS and the design will be
implemented by the use of Spartan 3 FPGAs. The only thing that might improve the design is the use
of an embedded clock. But this option needs to be investigated further.

It should be noted that the chosen design is very flexible. If a better solution to transmit the LVDS
data is found, only small changes are needed in this final design. A complete design description will
be found in the next section.

3.2 Introduction to the distributed ISA bus network
design

The distributed ISA bus network design distributes data from the host computers ISA bus to the slave
nodes. The master node samples the computers ISA bus and distributes the data, command and
address to the addressed slave node, via the LVDS link. The master node and the slave nodes consist
of a central FPGA that may include several functions. In this project, the master node has an internal
register manager and an ISA slave, a RS232 and a LVDS master controller. The slave node has an
internal register manager and an ISA master, a RS232, an 1°C slave and a LVDS slave controller.

Both the master node and the slave node are very flexible designs. All of the communication
controllers are programmed as modules (black boxes) and are controlled by a central state machine.
The state machine receives commands from either the ISA slave module (master node) or LVDS slave
(slave node). The state machine then coordinates the data flow between the modules. The RS232 and
the I1°C controllers are completely managed by the internal registers in the FPGA. The internal register
manager module handles all internal registers.

The master node, the slave node and all the modules are explained in their respective sections found
in chapters further down.

3.2.1 Communication flow

The design shown in Figure 3-3 consists of one master node and two slave nodes. Several slave nodes
can be connected to the distributed system and the number of slave nodes is only limited by the LVDS
link capacity. The host computer can read and write data to all shown controllers in Figure 3-3.
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Figure 3-3: The distributed ISA bus network design.

The communication flow is explained in the numbered list below and the numbers in the list
correspond to the numbers in Figure 3-3.

3.2.1.1 Writing data to a slave node in the distributed system

1.

2.
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The main program on the host computer writes data to an address in the predefined address
interval of the distributed system.

The I1SA slave module in the master node FPGA checks the address on the ISA bus. If the
address is in the right address range the ISA slave module halts the computers ISA bus by
deasserting the CHRDY command line. If the address corresponds to an internal register or to
the RS232 module, it is sent to the internal register manager. If the address is in the range of
the slave nodes, it is sent to the LVDS master module. When the internal register manager or
the LVDS master module signals that the transmission has ended, the ISA slave module asserts
the CHRDY signal and the ISA bus cycle on the host computer is allowed to end.

The LVDS master module transmits the data, the address and the error checking code on the
LVDS link. It then waits for a reply from the addressed slave node. If no reply is received in a
specified time interval or if the received data block is corrupt, the data is transmitted once
more. If an accurate acknowledge message is received or if a transmission error has occurred
twice the LVDS master signals that the transmission is completed.

The LVDS slave in the slave node checks if the data block received corresponds to its address
range. If the address corresponds to an internal register or to the RS232 or the 1°C controller, it
is sent to the internal register manager. If it corresponds to the ISA bus, it is sent to the ISA
master module. When the addressed module signals that the transmission is completed, a
response message is sent to the LVDS master in the master node.

The ISA master module sends the data and address to its distributed ISA bus and signals to the
main logic in the slave node when the ISA bus cycle has ended.



3.2.1.2 Reading data from a slave node in the distributed system

The procedure to read data from a slave node works in the same way as writing but the acknowledge
message sent back from the slave node now contains the read data as well.

3.2.2 The design described using the OSI model

When designing the modules in this project the OSI model has been considered as a reference. All of
the design is contained in the four lower levels of the model. The figures below show the data flow
through the layers when different accesses are being made. The modules used in the access are placed
in their specific layers and the arrows show the direction of the data flow. Figure 3-4 shows the data
flow when a distributed ISA bus is accessed. Figure 3-5 shows an access to the internal register
manager and the RS232 controller in the master node. Figure 3-6 shows the access to the register
manager and the 1°C and RS232 controllers in the slave node. Information about the OSI model can be
found in section 2.1.

Transport
layer 4

Master node Slave node

state machine - state machine
gj;‘:"sm module module

A L A L
Data link T v T Y :
layer2 | Computer bus ISA slave Data to LVDS LVDS to data ISA master ISA device
controller module out module in module module bus controller
L A L A L A
Physical T - T - L -
layer 1 Physical implementation Physical implementation Physical implementation
of the ISA bus of the LVDS bus of the ISA bus

Figure 3-4: The data flow during a distributed ISA bus access, presented using the OSI model.
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Figure 3-5: The data flow during an access to an internal register, 1°C or a RS$232 module in the master node.
The flow is presented using the OSI model.
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Figure 3-6: The data flow during an access to an internal register, 1°C or a R$232 module in the slave node. The
flow is presented using the OSI model.

3.3 Internal system communication

3.3.1 Serial data block between nodes

The data on the LVDS link is sent as a serial data block. The data block is 40 bits long plus one start
bit. The data is sent with the most significant bit first. That means that bit 39 is sent first, directly after
the start bit. The data block is shown in Figure 3-7 and is the same for all communications on the
LVDS link. This is for simplicity. The data block could be shorter when sent from the slave node, but
because this test system is only in the development stage, it can be optimised later.

read=1/write=0 SBHE# address bits (9:0)

T L i
139[38/37|36(35/34|33]32/31|30]29]28[27|26|25(24|23|22]21[20 19[ 18] 17| 16[15|14[13]12]11[10] 0 [ 8 [ 7 |6 [ 5|4 | 3 [ 2] 1] 0|

" error checking code (7:0) “info bits (3:0)

Figure 3-7: The 40-bit LVVDS data block (39:0).

data bits (15:0)

The functions of the bits in the data block are explained in the list below:

e Error checking code (7:0): This is the error checking code for the data block. It is generated
from the remaining 32 bits in the data block. The code is generated by the use of XOR gates as
explained in section 3.4.2.1 on page 42.

e Read=1/write=0: This bit specifies if it is a read (logic 1) or a write (logic 0) access.

o SBHE#: This signal specifies if it is two bytes (logic 0) or one byte (logic 1) in the data bits
(15:0).

e Info bits (3:0): These bits are used to send certain messages between the nodes. Three of
these bits are not used but are spared for future designs. Info bit 2 is used to tell the slave that
the message is an interrupt poll request. These bits could in a future design, be used to reset
the slave nodes or to request a resend of the data block, for example.

e Address bits (9:0): These bits contain the address of the 1/0 device or register accessed.

e Data bits (15:0): These bits contain the data to be written or the data that has been read. If
SBHE# is asserted all bits are valid and if the bit is deasserted only the data bits (8:0) are
valid.
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3.3.2 Asynchronous communication between the modules and the

state machine

The state machine and the modules in the nodes are communicating via asynchronous signals. The
signalling can be done in many ways, but in this design only two control signals are used.

module state machine
command transmission_ok transmission ok command
l— data input (7:0) data output (7.0) > data input (7:0)  data output (7:0) ~|

Figure 3-8: Example of the internal asynchronous communication between components in the FPGA.

The connections are shown in Figure 3-8 and the communication is explained in the list below. Note
that in this example the state machine masters the communication:

1. First, the state machine latches the data on the output.

2. Then the state machine asserts the command signal.

3. The module receives the command signal and performs the requested task. For example, the

command could signal a write access, and the data would then be written to a register in the

module.

When the task is performed, the module latches the data on its output (if needed).

5. Then the module asserts the transmission_ok signal and waits for the command signal to be
deasserted.

6. The state machine notice the transmission_ok signal and deasserts the command signal.

7. The module deasserts the transmission_ok signal and the communication cycle ends in the
state it started from.

>

3.4 The modules

3.4.1 The internal register managers

There are one register manager in the slave node and one in the master node. These can be addressed
from the host computer and may be used to configure the master/slave node or to communicate with
implemented controller modules.

The internal register manager module is very easy to expand into more registers. If more modules
such as JTAG and CAN controllers are to be implemented, registers supplied by the register manager
can easily control them. All the communication to and from these controllers will be made through the
register manager.

When needed, a register is accompanied by an extra signal. This signal tells when the register has been
written to or read from. For example, when the receiver buffer register in the RS232 module is read
from, the internal register manager has to signal to the module. The RS232 module receives this signal
and the read character is removed from the FIFO. In the same way, a signal is needed to inform the
FIFO that it is written to, and therefore has to load the FIFO with this new value. Note that the module
receives an acknowledge command signals asynchronously. But the modules controlled by the register
manager has to use the same clock if the read and write signals has to accompany the registers.

The main signals discussed above are shown in the Figure 3-9. The figure only shows some of the
input and output signals used by the register manager.
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internal register manager

— clk register_transmission_ok [—
— reset data out (15:0) —
— read command
— write command

— datain (15:0)

—SBHE ... | regi read signal —
— address in (9:0) reg3 write signal [—
— input reg1 (7:0) output reg3 (7:0) —
— input reg2 (7:0) output reg4 (7:0) —

Figure 3-9: The main input and output signals of the internal register manager module.

The communication flow in the internal register manager is described below:

1. First, the state machine controlling the register manager puts stable signals on the SBHE#,
data and address inputs. The register_transmission_ok signal has to be deasserted before the
state machine may assert any of the command signals.

2. Then the read or write command is asserted. If the SBHE signal is asserted it is a 16-bit
access, else only one byte is read or written.

3. If the access is a read command, the value of the addressed input registers is put on the data
out bus. If a read signal is needed to be sent along with the input register, this one is asserted
now as well. If the access is a write command, the value of the data input bus is written to the
addressed output register. If a write signal is to be sent along with the output register, it is
asserted now just as for the read access. If it is a 16-bit read access and the addressed register
is even, the addressed register and the register of the address +1 will be set as two bytes on the
16-bit data bus. In the same way if it is a 16-bit write access and the addressed register is even,
the addressed register and the register of the address +1 will be written to. Now when the
transfer is complete the internal register manager will signal to the state machine by asserting
the register_transmission_ok signal.

3.4.1.1 The registers in the distributed system

The register manager in this design is differently configured for the master node and the slave nodes.
The address space used is h3E8 — h3EF. These registers are addressing either the master node or the
slave node according to the “slave bit” set in the master bus controller register. The register functions
are explained below in Table 3-1.
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Slave Register

bit address

Read/
Write

Register name

0 h3E8 R/W | Master: Receiver buffer reg. / Transmitter holding register
X h3E9 R/W | Master bus controller register

0 h3EA R/W | Master: Divisor, low byte

0 h3EB R/W | Master: Divisor, high byte

0 h3EC R Master: FIFO status register

0 h3ED R/W | Master: Scratch register

0 h3EE R/W | Master node configuration data, low byte

0 h3EF R/W | Master node configuration data, high byte

1 h3E8 R/W | Slave: Receiver buffer reg. / Transmitter holding register
1 h3EA R/W | Slave: Divisor, low byte

1 h3EB R/W | Slave: Divisor, high byte

1 h3EC R Slave: FIFO status register

1 h3ED R/W | Slave: Scratch register

1 h3EE R/W | Slave: 12C bus register select

1 h3EF R/W | Slave: 12C bus data register

Table 3-1: Register addresses in the distributed system.

Receiver buffer register
This register contains the received character in the RS232 module.

Transmitter holding register
This register contains the character to be sent from the RS232 module.

Master bus controller register

This register controls if the registers in the slave node or the master node should be accessed. If the
least significant bit called the “Slave bit” is set, the registers h3E8, h3EA-h3EF is connected to the
slave node, else these will be connected to the master node. The bit-functions are explained in Table

3-2.

Bit  Function

‘01

‘Ol

Lo1

501

‘01

‘01

‘Ol

7
6
5
4
3
2
1
0

“Slave bit”

Table 3-2: Bit functions of the master bus controller register.
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Divisor, low byte and high byte

These two registers forms the 16-bit divisor controlling the baud-rate of the RS232 module. The
register manager clock domain is connected to the baud-rate generator. The 16-bit divisor is calculated
as:

baud rate generator frequency

Divisor number =
(the wanted baud rate) -16

FIFO status register

From this register the status of the RS232 FIFOs can be read. The bit-functions are explained in Table
3-3.

7 ‘0’

6 Rx FIFO is full

5 Rx FIFO is half full

4 Rx FIFO data is present
3

2

1

‘O’

TX FIFO is full

Tx FIFO is half full

0 Tx FIFO data is present

Table 3-3: Bit functions of the FIFO status register.

Scratch register
This register can be used as a scratch register. It has no other purpose.

Master node configuration data, low byte and high byte
These registers contains 16 bits to configure the master node in future implementations.

I°C bus register select and the 1°C bus data register

This register acts as an address and decides which of the 1°C module registers to be accessed by the 1°C
bus data register. The available I°C registers are listed in Table 3-4.

I°C bus register R/W Activated 1°C

select value register

h00 W | Register 0
h01 W | Register 1
h02 W | Register 2
h03 W | Register 3
h04 W | Register 4
h05 R Register 5
h06 R Register 6
h07 R Register 7
h08 R Register 8
h09 R Register 9

Table 3-4: Registers in the 12C module.
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3.4.2 LVDS in and out modules

The LVDS in and LVDS out modules are controlled by the main state machine in the slave or the master
node. The state machine decides when to receive and when to transmit data. This means that the
LVDS modules can act both as a LVDS master or a LVDS slave depending on how the state machine
is configured. The LVDS out module transmit the data 90 degrees ahead of the clock signal so that the
receiver can sample the data bits using the clock signal. The simulation of the LVDS out module is
shown in the Figure 3-10.

Ii]
10700701

The data flow in the two modules are shown in Figure 3-11 and the communication between the state
machine, the LVDS link and the LVVDS modules are explained below:

Data to Ivds out

PISO
Error code DDR _{}_ . -
generator o ifferential data _
x 4T ”
D Siclockiss=== ;:::::::::::::::::::ir
LVDS clock --=--4  gnd = oo [ « .
delayed vee —> (LVDS differential clock
LVDS to data in
Error code SIPO a8
checker DDR
SIPO x

Figure 3-11: The LVDS in and LVDS out modules.

The LVDS out module transmits data according to the list below:

1. First, the state machine checks if the LVDS out module is ready to send data by checking the
Ivds_out_ready signal. It also enables the differential output buffer so that the data generated
will reach the differential output pins on the FPGA.

2. The data, address and command signals are set and the error code generator component in
Figure 3-11 will compose the data block described in section 3.3.1.
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3. The data block is split up and loaded into two PISO' shift registers.

4. The DDR mux will send the data bits coming from the shift registers at a data rate two times
the LVDS clock rate. The shift registers take turn in presenting the next data bit to the DDR
MUX. In this way the shift registers and the DDR MUX are driven by the same clock and
generates a bit stream at double data rate.

5. Another DDR MUX has gnd and vcc as inputs instead of data from the shift registers. Because
the clock that drives the DDR clock MUX is delayed, the generated data bit stream and the
clock will be phase shifted. This is because the receiver should be able to sample the data
stream with the delayed clock signal. The data on the two LVDS channels is sent to another
node in the network and is received by an LVDS in module in that FPGA.

The LVDS in module receives data according to the list below:

1. First, the state machine resets the LVDS in module and then it waits for a message to be
received.

2. The LVDS data is sent with one start bit (logic 1) and one stop bit (logic 0). The DDR receiver
splits the incoming data bits using the delayed clock signal as a trigger. The data is split up
into two bit streams received by two SIPO" shift registers. When the shift register that
received the first bit is full, it will deassert the enable signal on itself and on the other shift
register. It will also signal to the error code checker that the data registers are full.

3. The error code checker will take the received data block, regenerate the error checking code
and compare it to the received data.

4. If the data is received correctly, the transmission_ok signal is asserted and read by the state
machine. If the data is corrupt, it will assert the transmission_bad signal instead.

3.4.2.1 The error code generator

The error code included in the data block is generated in two stages by XOR gates in series. From 32
bits, 8 control bits are generated and the procedure is shown in Figure 3-12. The method is fast and
easy to implement.

Data block (39:0)

|39|38|37|36|35|34|33|32|31 [30[29]28[27]26]25[24[23]22[21]20]19]18[17[16[15]14]13[12]11]10] 9 [8 [ 7[6 [ 5 [ 4] 3] 2[ 1 ] 0 |
"'—-"'""_"\/'_""'"-—'J \-.._..---—v—---.__./ \._...---—-v—---._.-/ \-.._..---—v—---.._../

f error checking code (7:0)

Figure 3-12: Error code generation using XOR gates.

3.4.3 Cascaded DCMs

Two cascaded digital clock managers are used to generate the clock signals in the FPGA. The quality
of the clock signals decrease by arranging them in series. In this design, this is done anyway to
achieve a high data rate. One DCM is capable to multiply the input clock signal. It is also able to
produce four clock signals phase shifted by 90 degrees from each other. But one single DCM can not
do these tasks at the same time. Therefore, two DCMs are needed. One to multiply the input clock,

"Parallel In Serial Out.
" Serial In Parallel Out.
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and one to generate the shifted clock signals. The arrangement shown in Figure 3-13 produce all the
clock frequencies needed to optimise the design. The input clock frequency used in this design has a
frequency of 50 MHz. The cascaded DCM arrangement then produce the four phase shifted clock
signals needed for the LVDS out module, one 50 MHz clock for the internal logic and one 25 MHz
signal to drive the internal register manager and its controller modules.

DCM cascaded multiclock

DCM 1 DCM 2
Clock in[—> clock 2X > clk 0 — | clk_Ivds_data

clk 80 —— | clk_Ivds_delayed

reset | —»f locked —>I>o—> rst  clk 180 — | clk_Ivds_data_inv

clock 0 clk 270 —— | clk_Ivds_delayed_inv
clock 12X locked — | DCM_locked
> | clik_int

> | clk_register_manager

Figure 3-13: The arrangement of the two cascaded DCMs generating the clock signals driving the FPGASs
internal logic.

3.4.4 RS232 controller

The RS232 controller module consists of one RS232 transmitter and one RS232 receiver. Both the
transmitter and the receiver are accompanied by a 16 byte deep FIFO. The transfer speed can be
chosen by the use of two divisor registers and the state of the FIFOs can be read from one register. The
transmitter holding register and the receiver buffer register has the same address.

3.4.5 1°C slave controller

The I°C slave controller is programmed according to the system management bus specification [23].
This module is equipped with five 8-bit input registers and five 8-bit output registers. All of these are
controlled via the internal register manager in the slave node.

3.4.6 Timers

There are four timers to coordinate the communication in the distributed system. All of these timers
have one clock input, one reset and one time-out output signal as shown in Figure 3-14. A simulation
of the LVDS slave transmission timer is shown in Figure 3-15.

timer

— clk time-out —
—1 reset

Figure 3-14: The entity configuration of the timer components.

1_timout

Figure 3-15: Simulation of the LVDS slave transmission timer.
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To start the timer the reset signal is deasserted. When the timer has counted the clock pulses of the
clock signal and achieved the specified value, a time-out signal is asserted. The time-out signal will be
deasserted as soon as the reset signal is asserted again. The function of the timers are explained below:

e LVDS master transmission timer: This timer is used by the master node state machine to
keep track of how long time it takes for the slave node to reply. If this timer times out, the
message will be retransmitted or the address will be treated as if it is not accessible.

o LVDS slave transmission timer: The slave node state machine keeps track of how long time
the access from the master node has taken using this timer. If this timer times out, the slave
node will not be allowed to send a reply message to the master node and the ongoing access
from the master node will be aborted.

e IRQ timer: This timer times out when there has been no access on the LVDS link for a
specified time. This time-out gives the master node an opportunity to poll the slave nodes for
ISA bus interrupt requests.

e ISA bus 15 us timer: The ISA slave uses this timer to assure that the access is not taking more
than 15 microseconds. Because the ISA slave deasserts the CHRDY signal on the ISA bus till
the distributed system transfer is completed, the RAM refresh cycles on some systems can be
disturbed. To prevent this the ISA slave will abort the access and release the ISA bus when this
timer times out.

3.4.7 ISA slave

The ISA slave module acts as a 16-bit device on the ISA bus. The data, address, SBHE# and command
signals are sampled. If the address is in the specified range the CHRDY signal will be deasserted and
the bus will be prolonged till the CHRDY signal is asserted again. The slave node will signal to either
the internal registers or to the master node state machine. When a respond signal is attained from the
addressed module or if the I1SA bus 15 us timer will time-out, the I1SA slave will release the bus by
asserting the CHRDY signal again.

3.4.7.1 I1SA slave interrupt handler

The master node state machine controls the ISA slave interrupt handler, IRQ out. The interrupt
handler signals to the state machine which of the 11 interrupts to be polled next. When the state
machine has polled an interrupt, it informs the interrupt handler if this interrupt has been requested or
not.

If the interrupt has been requested, the corresponding interrupt line on the ISA bus is held low for
three clock cycles (60 ns when using a 50 MHz clock) and is then released. This procedure will signal
to the microprocessor on the ISA bus that this interrupt has been requested.

When the interrupt polling cycle has ended, the next interrupt can be polled the same way as described
above.

3.4.8 ISA master

The ISA master module acts as the microprocessor mastering the ISA bus. The 1/0O devices connected
to the 1ISA master module will receive the bus signals, just as if they were sent by the microprocessor.
Only 1/O device accesses and interrupt handling are supported. The 1/0 devices can be read from or
written to using both 8-bit and 16-bit accesses. Memory devices and DMA are not supported.

The bus cycles can be prolonged and shortened by the use of the CHRDY and the NOWS# signals
respectively. More information about the ISA bus can be found in section 2.4.

3.4.8.1 ISA master interrupt handler

The ISA master interrupt handler, IRQ in, samples the interrupt lines from the distributed ISA bus. If a
positive edge is noticed, the interrupt request will be stored by the interrupt handler. When the slave
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node is polled for this interrupt by the master node, the slave node state machine will request and
receive the status of the polled interrupt from the interrupt handler.

3.5 The master node

All the logic in the master node is programmed into one Spartan 3 FPGA. A central state machine,
master node state machine, handles the communication between the modules as shown in Figure
3-16. The instructions from the host computer are received by the ISA slave module and are sent to the
slave nodes through the LVDS link. The state machine acts as a master on the link using the LVDS in
and LVDS out modules. The dotted areas in the figure marks out the four different clock domains in the
master node. This makes it possible to run the high-speed parts such as the LVDS modules at a higher
frequency while some slower logic may run at a lower frequency.

o — [ clk_Ivds_data e - . Clock(LVDS out)
T ¥ —|clk_Ivds_delayed - :
3% — [ clk_Ivds_data_inv
S % — | clk_Ivds_delayed_inv ' — Data to LVDS out _Data inout
g £ — 7| clk_int
(=] — | clk_register_manager e s o
— fCIock inout i
............... LVDS to'data in
o Lo Clock(LVDS in)
LVDS master
transmission timer Master node
state machine .
". Clock(clk_int -
internal)
ISA slave
ISA bus 15 us timer
Interrupt handler ]
Clock(register
) I LI . manager)
Internal register manager .
CLIIIIIO | "
e UART RS232 Ny
B
T

Figure 3-16: Interconnection diagram of the main internal modules in the master node FPGA.

The design is built in a hierarchal manner using several components. The components high up in the
hierarchy are easily combined into a design and are therefore called modules. Some of these
components are constructed from components that are more general. The component hierarchy and the
components are found in the appendix.
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3.5.1 The communication flow in the master node

Figure 3-16 shows the master nodes internal configuration, coordinating the communication between
the nodes in the network. The command, data and address signals from the host computer is first
analysed by the ISA slave module. The ISA slave module will receive and check the address. If the
distributed system is addressed it will hold the bus until the distributed system has finished the
transfer. If an internal register is addressed the data is sent to the internal register manager. If one of
the slave nodes is addressed the data is sent to the state machine. The state machine uses the LVDS
modules to communicate with the slave nodes and the timers to time coordinate the communication.
The master node state machine is implemented in VHDL and is a synchronous Mealy type state
machine with synchronous outputs. This means that all the logic and outputs are synchronised with the
clock driving the state machine. The state machine communicates with other modules using
asynchronous command signals, which makes it possible to let the modules use different clock
domains.

Figure 3-17 shows a state diagram of the state machine. The state machine will start in the idle state
(ground state S0) after a reset. The text in every state circle explains the function of the state and the
text by the arrow between the states indicates the jump condition. For detailed information of the state
machine, consider the VHDL program code in Appendix B.

IRQ LVDS out ack SQ2 Wait for command S1 LVDS out ack S2

IRQ timer
timeout

ISA read or
write command

Signal to LVDS out
module to poll
for IRQ status

fait for a command
from the ISA slave

module or for a IRQ
timer timeout

Signal to LVDS out
module to

LVDS out is send data

sending data

I1SA command
signal is
reset

LVDS outis
Ground state SO sending data

IRQ LVDS in enable SQ3 LVDS in enable S3

If LVDS out has
finished sending data

If LVDS out has
finished sending data

Reset asynchronous

then ianal then
enable LVDS in command signals enable LVDS in
module module

LVDS out has
sent data

LVDS out has
sent data

LVDS in module has
received a corrupt message
or timed out

IRQ end SQ4 Resend or end S4

Wiait till LVDS in has
received data or
till transmission timer
has timed out

Sta r"[ after
reset

Wait till LVDS in has
received data or
till transmission timer
has timed out

LVDS in module has
received a corrupt
message or timed out twice
or
The IRQ module the received message LVDS in module
has updated the contained no errors has received a

IRQ command reset SQ5

polled interrupt's corrupt message
status or timed out for
the first time

Wait till the IRQ
module has updated

and reset its command
signal

LVDS in module has
received an error free
IRQ status message

Figure 3-17: State diagram of the master node state machine.

Below the communication-flow in the state machine is explained. Both Figure 3-16 and Figure 3-17
are helpful for understanding the explanations.
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3.5.1.1 Reading and writing data to a slave node

Host computer: First, the host computer sends a write or read command accompanied with
data and address to the ISA bus on the host computer.

ISA slave: The ISA slave module in the master node will receive the message and check the
address. If the distributed system is addressed it will hold the bus until the distributed system
has finished the transfer. If a slave node is addressed the ISA slave will signal to the state
machine if it is a read or write command.

State S1: The state machine waits in this state to receive a command from the ISA slave node.
When the command is received, the state machine enables the LVDS output buffer and jumps
to next state.

State S2: LVDS out module is signalled to send the data and address along with the read or
write command. The state machine will jump to next state when the LVDS module signals
that it is busy sending data.

State S3: When the LVDS out module is signalling that it has sent the data block and is ready,
the output buffer will be disabled and the LVDS in module will be enabled to wait for a
response from a slave node. The state machine will also jump to its next state when the data is
sent.

State S4: Here the state machine waits till the LVDS in module has received the data from the
addressed slave node. If the data is corrupt or if the transmission timer times out, the data will
be sent again by enabling the output buffer and jumping to state S2. If the data is corrupt or
the timer times out a second time, or if the data is received correctly, the state machine will
jump to state SO and signal to the ISA slave module to end the transmission cycle.

State SO: In this state the state machine will wait for the ISA slave module to reset the
command signals. When the read and write command is reset the signals used by the state
machine will reset and the state machine will jump to state S1.

3.5.1.2 ISA interrupt polling

When no data transfer is occupying the bus, the IRQ timer will time-out after a specified time. The
state machine will then poll the slave nodes for one interrupt at a time. If one slave node has registered
an interrupt corresponding to the polled interrupt number, it will reply to the master node that this
interrupt has been requested. The state machine will act according to the following list:

1.

State S1: If no command from the ISA slave is received during a specified time, the IRQ timer
will time-out. The state machine will then enable the LVVDS output buffer, assert the interrupt
poll info bit in the data block, and jump to state SQ2.

State SQ2: Here the LVDS out module will be signalled to send the data block. The state
machine will jump to next state when the LVVDS module signals that it is busy sending data.
State SQ3: When the LVDS out module is signalling that it has sent the data and is ready, the
output buffer will be disabled and the LVDS in module will be enabled to wait for a response
from a slave node in the next state.

State SQ4: Here the state machine waits until the LVDS in module has received a message
from a slave node. Only if a slave has received an interrupt request from its distributed ISA
bus, it will reply to the master. If no slave node has received an interrupt, no reply will be sent
and the LVDS master transmission timer will time out. If the data is corrupt or if the
transmission timer times out, the state machine will end the interrupt poll cycle by jumping to
state SO. If the data block is received correctly, the interrupt status is sent to the interrupt
handler module (IRQ out) and the state machine jumps to state SQ5.

State SQ5: In this state the state machine waits for the interrupt handler to finish the possible
interrupt signalling on the ISA bus and then it jJumps to state SO.
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3.5.2 Timing and area constraints

The design can be optimised by the use of timing and area constraints. These are set in the Xilinx ISE
development tool. The used clock frequencies should be specified in the timing constraint editor. The
high-speed data paths, operating temperature and supply voltage should also be specified. Table 3-5
below explains the constraints chosen for this design.

Constraint Explanation

VOLTAGE =1.2; This is the operating voltage for the internal logic
on the Spartan 3 starter kit board.
Estimated operating temperature of the FPGA in
Celsius degrees.

The input frequency of the LVDS data clock
received from the slave node with an estimated
jitter of 0.5 ns.

The input frequency of the input clock feeding the
DCMs in the FPGA.

Use low skew in the LVVDS clock from the DCM
Use low skew in the LVDS clock from the DCM
Use low skew in the LVDS clock from the DCM
Use low skew in the LVDS clock from the DCM
Use low skew in the LVDS data input path.

Use low skew in the LVDS clock input path.

Use low skew in the LVDS data output path.

Use low skew in the LVDS clock output path.

TEMPERATURE =50 ;

NET "lvds_clk_p" TNM_NET = "lvds_clk_p";

TIMESPEC "TS_Ivds_clk_p" = PERIOD "lvds_clk_p" 100 MHz
HIGH 50 % INPUT _JITTER 0.5 ns;

NET "clk50" TNM_NET = "clk50";

TIMESPEC "TS_clk50" = PERIOD "clk50" 50 MHz HIGH 50 %
NET "CLK_LVDS_DATA" USELOWSKEWLINES;

NET "CLK_LVDS_DATA_INV" USELOWSKEWLINES;

NET "CLK_LVDS_DELAYED" USELOWSKEWLINES;

NET "CLK_LVDS_DELAYED_INV" USELOWSKEWLINES;
NET "Data_from_lvds driver" USELOWSKEWLINES;

NET "clock_from_lvds_driver" USELOWSKEWLINES;

NET "Data_to_lvds_driver" USELOWSKEWLINES;

NET "clock_to_Ivds_driver" USELOWSKEWLINES;

Table 3-5: Master node timing constraints.

Area constrain could be used to manually decide where to put the logic or to try to fit all the logic into
a smaller FPGA. In this design, all the logic fit into the FPGA chosen and because it may be very hard
to manually place the design with a better result than achieved by the ISE placer, no area constraints
are specified in this design.

3.5.3 FPGA resource utilisation

The implemented master node FPGA utilisation is shown in the Table 3-6. The global clock nets are
all used and two out of four DCMs are used. Many 1/0O-pins are also used. On the other hand, only one
fourth of the Slices are used. There are much BRAM left as well.

This means that lots of logic may still be implemented in the FPGA. The I°C controller occupies 7% of
the slices and the RS232 controller occupies 3% of the slices. The internal register manager occupies
about 5 % of the Slices. Because the register manager will grow bigger by the use of more registers
one may assume that at least 15 more RS232 controllers or at least 7 more I1°C controllers may be
implemented in the FPGA, if needed.

Available Utilisation

Logic utilisation

Table 3-6: Master node utilisation summary using the Spartan 3 xc3s200 FPGA device with the ft256 package.
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Number of Slices 454 1920 23%
Number of Slice Flip Flops 501 3840 13%
Number of 4 input LUTs 783 3840 20%
Number of bonded 10Bs 81 173 46%
Number of BRAMs 1 12 8%
Number of GCLKs 8 8 100%
Number of DCM_ADVs 2 4 50%




3.6 The slave node

The slave node has several similarities with the master node. The logic is in this design programmed
in one Spartan 3 FPGA. A central state machine, called the slave node state machine, handles the
communication between the modules as shown in Figure 3-18. In other tested designs, two FPGAs are
used together with one microcomputer. The devices in the slave node communicate between each
other via an 1°C bus.

The state machine acts as a slave on the LVDS link using the LVDS in and LVDS out modules. The
dotted areas in the figure marks out the four different clock domains in the master node. This makes it
possible to run the high-speed parts such as the LVDS modules at a higher frequency while the some
slower logic may run at a lower frequency.

S — | clk_lvds_data et - . Clock(LVDS out)
g f._. — | clk_lvds_delayed - .
o % — | clk_lvds_data_inv ;
3 % — | clk_Ivds_delayed_inv " 1 Data to LVDS out “Datainout |
g £ —| ck_int : '
(m] —*| clk_register_manager B T '
— _Clock inout .
LVDS to data in
.................... Clock(LVDS in)
LVDS slave
i - Slave node
transmission timer e e [ )
*Clock(clk_int -
internal)
ISA master
Interrupt handler .
Clock(register
---------------------------------------------- . manager)
. <
Internal register manager UART RS232 :
4 _> '.
Eeaz=s=a] ‘
e IC slav NE
H slave NG,

Figure 3-18: Interconnection diagram of the main internal modules in the slave node FPGA.

The component hierarchy and the components in the slave node design are found in the appendix.
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3.6.1 The communication flow in the slave node

Figure 3-18 shows the slave node state machine coordinating the communication between the
modules. First, the LVDS in module receives a message containing command, data and address. The
state machine checks the message and if the address corresponds to this specific slave node, it sends
the data to the addressed module. When the addressed module has ended its transmission, it signals the
state machine. The state machine then signals the LVDS out module, to send a reply message to the
master node.

The slave node state machine is implemented as the master node state machine. The state machine
communicates with other modules using asynchronous command signals, which makes it possible to
let the modules use different clock domains.

Figure 3-19 shows a state diagram of the state machine. The state machine will start in the ground
state after a reset. The text in every state circle explains the function of the state and the text by the
arrow between the states indicates the jump condition. For detailed information of the state machine,
consider the VHDL program code in the appendix.

Wait for device receive S1 LVDS out send S2

Transmission
is completed

Wait for the
addressed module to
end its data
transmission

Signal to LVDS out
module to
send data

No module has
replied during the
specified time - the
transmission timer
has timed out

LVDS in module
has received data

LVDS out ack S3

Ground state SO

Wait for LVDS out
module to start sending
data

Wait for the LVDS in
module to receive

.... Start after

data. reset

Send command signal
to the addressed
moddule

LVDS out is
sending data

Reply signals
are reset

End of LVDS
transfer cycle S4

Device command reset S5

Wait for the LVDS
transfer cycle to end

Wait for the addressed
modules to reset their
reply signals

LVDS out has
sent the data block
to the master node

Figure 3-19: State diagram of the slave node state machine.

Below the communication-flow in the state machine is explained. Both Figure 3-18 and Figure 3-19
are helpful for understanding the explanations. Some different access scenarios can occur. The internal
registers or the distributed ISA bus can be read from or written to. The master node can also poll for
interrupt status. All of these scenarios are explained below:

1. State SO: First, the state machine waits for the LVDS in module to receive a data block. If the
address corresponds to the slave node, it signals to the addressed module to perform the
requested access. Then it jJumps to state S1.

2. State S1: In this state the state machine waits for the addressed module to perform the
requested access. The addressed module could be the internal register manager, the I1SA
master or the interrupt handler, IRQ in. When the module signals that it has performed the
requested access and is ready, the state machine enables the LVDS output buffer and jumps to
state S2.
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3. State S2: Here the LVDS out module is signalled to send the respond message from the
addressed module back to the master node. If it was a read access, the respond message will
contain the read data. If it was an interrupt poll access, the respond message will contain the
status of the polled interrupt. If it was a write access, the respond message will just be sent as
an acknowledge message. Then the state machine will jump to state S3.

4. State S3: Here the state machine waits for the LVDS out module to signal that it is busy
sending data. When this signal is received, the state machine will jump to state S4.

5. State S4: This state waits for the LVDS out module to finish sending data. When the data
block is sent the state machine disables the LVDS output buffer and jumps to state S5.

6. State S5: In this state the state machine waits for the internal modules to reset their
communication signals. When these signals are reset the state machine can end this access
cycle and jump to state SO.

3.6.2 Timing and area constraints

As for the master node, the design can be optimised by the use of timing and area constraints. The
Table 3-7 below explains the constraints chosen for this design.

Constraint Explanation

VOLTAGE =1.2; This is the operating voltage for the internal logic
on the Spartan 3 starter Kit board.

TEMPERATURE =50 ; Estimated operating temperature of the FPGA in
Celsius degrees.

NET "lvds_clk_p" TNM_NET = "lvds_clk_p"; The input frequency of the LVDS data clock

TIMESPEC "TS_lvds_clk_p" = PERIOD "lvds_clk_p" 100 MHz | received from the slave node with an estimated

HIGH 50 % INPUT JITTER 0.5 ns; jitter of 0.5 ns.

NET "clk50" TNM_NET = "clk50"; The input frequency of the input clock feeding the

TIMESPEC "TS_clk50" = PERIOD "clk50" 50 MHz HIGH 50 % | DCMs in the FPGA.
TIMESPEC "TS_I2C_SCLK_in" = PERIOD "I12C_SCLK_in" 1| The input frequency of the input clock from the

MHz HIGH 50 %; I°C bus.

NET "CLK_LVDS DATA" USELOWSKEWLINES; Use low skew in the LVVDS clock from the DCM
NET "CLK_LVDS_DATA_INV" USELOWSKEWLINES; Use low skew in the LVDS clock from the DCM
NET "CLK_LVDS_DELAYED" USELOWSKEWLINES; Use low skew in the LVDS clock from the DCM
NET "CLK_LVDS_DELAYED_INV" USELOWSKEWLINES; | Use low skew in the LVDS clock from the DCM
NET "Data_from_lvds driver" USELOWSKEWLINES; Use low skew in the LVDS data input path.
NET "clock_from_lvds_driver" USELOWSKEWLINES; Use low skew in the LVDS clock input path.
NET "Data_to_lvds_driver" USELOWSKEWLINES; Use low skew in the LVDS data output path.
NET "clock_to_lvds_driver" USELOWSKEWLINES; Use low skew in the LVDS clock output path.

Table 3-7: Slave node timing constraints.

3.6.3 FPGA resource utilisation

The implemented slave node FPGA utilisation is shown in Table 3-8. The slave node utilisation is
similar to the master node. This means that lots of logic may still be implemented in the FPGA. The
1°C controller is only implemented in the slave node and occupies 7% of the Slices. Because the
register manager will grow bigger by the use of more registers one may assume that at least 7 more 1°C
controllers may be implemented in the FPGA.
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Available

Utilisation

Logic utilisation

Number of Slices 532 1920 27%
Number of Slice Flip Flops 653 3840 17%
Number of 4 input LUTs 925 3840 24%
Number of bonded 10Bs 95 173 54%
Number of BRAMs 1 12 8%
Number of GCLKs 8 8 100%
Number of DCM_ADVs 2 4 50%

Table 3-8: Slave node utilisation summary using the Spartan 3 xc3s200 FPGA device with the ft256 package.

3.7 Physical channel distribution and voltage levels

3.7.1 Voltage levels

On the Spartan 3 starter kit board and on the Hectronic H4070 board, the FPGA is fed with three
voltage levels. These are Vcco = 3.3 V, Vecaux = 2.5V and Veentr=1.2 V.

The Vcco supplies the 1/0 banks, the Vccaux supplies the DCMs and some 1/O structures, and the
Vet supplies the internal logic within the FPGA [7].

The BLVDS differential standard chosen to drive the LVDS link has a common mode voltage of 1.25
V and a voltage swing of 350 mV.

The digital output signals from the slave node FPGA to the distributed ISA bus has the voltage levels
3.3V or 0 V. The signals on the host computer bus are connected to the master node. The only output
signals used here are the CHRDY and the 1016# signals. These signals are never driven high, they are
either high impedance or driven low to 0 V.

3.7.2 LVDS link distribution

The two LVDS channels are transmitted in a CAT5 type cable. The bus configuration is a source
synchronous clock design. Four wires in the cables are used forming two LVDS pairs. One holding the
source generated clock signal and the other the data signal. Only two terminating resistors of usually
50 to 100 Q are used to terminate each channel in both ends. More information about the set-up is in
the design evaluation chapter.

3.8 Timing analysis of the distributed network

In this section, theoretical timing diagram of the communication in the distributed network are
presented.

3.8.1 Access time for a device on the distributed ISA bus

The timing diagram in Figure 3-20 shows the host computer making a read access from a device on
the distributed ISA bus. The ISA bus clock is 8.33 MHz and the LVDS baud rate is 200 Mbaud. The
generated clock signal driving the FPGA has a frequency of 50 MHz. Note that the width of the time
periods marked out by capital letters are not in proportion to the actual time elapsed in that period. The
actual time elapsed are presented further down.
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Figure 3-20: The timing diagram shows a distributed ISA bus access made from the host computer.
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The letters in the list below corresponds to the letters in the figure, marking different time-periods.

A. 67 +0..20 ns: The variable delay of 0 to 20 ns depends on the ISA bus clock phase relative to

the 50 MHz internal sampling clock. The 67 ns is the time between the address latch BALE

and the read command.

60 + 0..20 ns: This delay depends on the internal pipe-lined logic in the LVDS out module that

has to load the DDR and the shift registers.

205 ns: The time it takes to send 41 bits of data on the LVDS link, at 200 Mbps.

20 ns: The delay in the DDR and the shift registers in the LVDS in module.

20 + 0..20 ns: Time for the error code checker component to check the data block and to

synchronise it to the internal clock.

0..125 ns: The time to synchronise the internal clock to the ISA bus clock on the slave node.

125 ns: Time before asserting the ISA bus read command.

. 192 or 562 ns: The command is asserted 192 ns for an ordinary 16-bit read access and 562 ns

for an ordinary 8-bit access.

I. 40 + 0..30 ns: The internal logic delay in the slave node state machine and in the LVDS out

module.

205 ns: The time it takes to send 41 bits of data at 200 Mbps, on the LVDS link.

20 ns: The delay in the LVDS in module.

20 + 0..20 ns: The time for the error code checker component to check the data block and to

synchronise it to the internal clock.

M. 20 ns: The time for the ISA slave module to receive the transmission_ok signal from the
master node state machine.

N. 67 + 0..192: The delay between putting the data on the bus and to assert the ISA CHRDY
signal. This delay can probably be optimised to 0..125 ns.

O. 312 ns: The time taken for the host computer to end the ISA bus cycle and to be able to start a
new access again.

w

mo o

Tom

X

Several of the delays above can be optimised. The delay marked with the letter J where the data block
is sent from the slave node to the master node, could be optimised to 105 ns. This is done by only
sending the requested 16 data bits and four bits of error checking code. If the start bit is included, only
21 bits need to be transmitted instead of 41. The delay marked with the letter N, where the data is put
on the ISA bus some time period earlier than the CHRDY signal is asserted, could be optimised to
0..125 ns. The delay was introduced as a safety measure so that the data bits would have plenty of time
to stabilise before the bus cycle would end. This is probably not necessary and the CHRDY signal
could be asserted at the same time when the data is put on the bus.

When the time delays in the list above are summarised, the result in Table 3-9 is achieved. The
ordinary ISA bus cycle times are also in the table as well as the possible optimised access times. The
results presented in the table shows that the access time for the distributed ISA bus takes three to four
times longer than for the ordinary ISA bus.

Type of access Shortest time Longest time
16-bit read access 1370 ns 1800 ns

8-Dbit read access 1740 ns 2170 ns
Optimised 16-bit read access 1200 ns 1570 ns
Optimised 8-bit read access 1570 ns 1940 ns
Ordinary 16-bit read access 375 ns -

Ordinary 8-bit read access 750 ns -

Table 3-9: The access time to the distributed ISA bus compared to the ordinary ISA bus access.
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3.8.2 Access time for an internal register

The time to access a register is faster than to make a distributed ISA bus access. The time to access a
register in the slave node is roughly 400 ns shorter than the distributed 16-bit access. The time to
access a register in the master node is the same as for the ordinary 16-bit access, i.e. 375 ns.
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Chapter 4 — Results

4.1 Software related trouble shooting and solved
problems

The development of this design has had many difficult stages where the code had to be analysed and
tested several times to achieve the wanted circuit behaviour. Some of these problems and their
solutions are presented in this section.

4.1.1 Generation of high speed LVDS in a low cost FPGA

Because the speed grade in the FPGA used is -4, it is quite hard to generate high-speed data. The
modules requiring high-speed are especially the LVDS in and LVDS out modules. To optimise these
modules for speed, careful programming using the schematic editor and device specific logic has been
made. The resulting transfer rate achieved is around 400 Mbaud according to the post-place-and-route
timing analyser tool. The practical achieved data speed is limited by reflections in the LVDS bus
configuration as discussed in section 4.4.2.

4.1.2 Synchronising asynchronous signals before entering a state
machine

When a synchronous state machine is implemented, it is very important to synchronise the input
signals. The input signals that are used in a jump-condition in the state machine are not allowed to
change when the state machine is performing the jump. If this occurs the state machine may jump to
wrong state or to an undefined state. Synchronising the input signals by the use of flip-flops before
entering the state machine easily solves this.

4.1.3 Generation of high-speed clock signals

The generation of high-speed clock signals has been a big issue. There are several ways to do this and
the best way, in this case, is to use the IP-core including two cascaded DCMs. Because the LVDS
transmitter requires four signals shifted 90 degrees between each other, it is quite hard to generate
them with high quality. The maximum frequency of the four clock signals achieved are 200 MHz
generated from a 100 MHz input clock. For a long time, during the development, only 50 MHz of high
quality signals could be achieved, resulting in a baud rate of 100 Mbaud. Later on, after trying lots of
DCMs and other design configurations, stable communication at 200 Mbaud was achieved.

4.2 Timing analysis of the design

The figures below show the timing summary of the design. The timing summary shows the estimated
timing after the synthesis and the post place and route timing report shows the estimated timing after
the design has been routed in the FPGA.

The timing summary of the LVDS link out component is shown in Figure 4-1. The requested clock rate
is 150 MHz and will generate a baud rate of 300 Mbaud. The estimated (actual) value is 4.75 ns at
most and this will accept an input clock signal of 210 MHz resulting in a maximum LVDS baud rate
of 420 Mbaud.

56



Timing Summary:

Speed Grade: -4

Minimum period: 5.078ns (Maximum Frequency: 196.928MHz)
Minimum input arrival time before clock: 2.715ns
Maximum output required time after clock: 7.165ns
Maximum combinational path delay: No path found

Multi pass post place and route constraint timing report:

Constraint | Requested | Actual | Logic
| Levels
TS_lvds_data_clk = PERIOD TIMEGRP "lvds_d | 6.666ns | 4.748ns | 3

ata_clk™ 150 MHz HIGH 50% | | |

TS_lvds_data_clk_inv = PERIOD TIMEGRP "lv | 6.666ns | 4.112ns | 1
ds_data_clk_inv" 150 MHz HIGH 50% | | I

All constraints were met.

Figure 4-1: Timing analysis of the LVDS link out component.

The timing summary of the LVDS link in component is shown in Figure 4-2. The requested clock rate is
150 MHz and will result in a baud rate of 300 Mbaud, just as for the LVDS link out component. The
estimated (actual) value is 5.63 ns at most and this will accept an input clock signal of 175 MHz

resulting in a maximum LVDS baud rate of 350 Mbaud, supported by this component.

Timing Summary:

Speed Grade: -4

Minimum period: 6.381ns (Maximum Frequency: 156.715MHz)
Minimum input arrival time before clock: 1.901ns
Maximum output required time after clock: 7.281ns
Maximum combinational path delay: No path found

Multi pass post place and route constraint timing report:

Constraint | Requested | Actual | Logic
| Levels
TS_lvds_data_clk_inv = PERIOD TIMEGRP "lIv | N/A | N/A | N/A

ds_data_clk_inv" 150 MHz HIGH 50% | | |

TS_lIvds_data_clk = PERIOD TIMEGRP “lvds d | 6.666ns | 5.632ns | o
ata_clk™ 150 MHz HIGH 50% I I |

All constraints were met.

Figure 4-2: Timing analysis of the LVDS link in component.
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The timing summary of the slave node top-level design is shown in Figure 4-3. The input clock
(TS_XLXI_107_U1_CLKO_BUF) is 50 MHz corresponding to 20 ns requested value. The requested value
for the LVDS input and output signal (TS_Ivds_clk_p) are 100 MHz (10 ns). The I°C input clock is
named TS_12C_SCLK_in. The clock signals generating the data in the LVDS out module is named
TS_XLXI_107_U2_CLKO_BUF and TS_XLXI_107_U2_CLK180_BUF. The low frequency clock signal of
25 MHz, that is driving slower logic in the FPGA, is hamed TS_XLXI_107_U1_CLKDV_BUF. All of the
signals mentioned above are set with an appropriate constraint. All of the constraints have

been met.

Timing Summary:

Speed Grade: -4

Minimum period: 14.232ns (Maximum Frequency: 70.264MHz)
Minimum input arrival time before clock: 6.153ns
Maximum output required time after clock: 8.912ns
Maximum combinational path delay: No path found

Multi pass post place and route constraint timing report:

Constraint | Requested | Actual | Logic
| | | Levels
TS_lvds_clk_p = PERIOD TIMEGRP "lvds_clk_ | 10.000ns | 5.634ns | O

p" 100 MHz HIGH 50% INPUT_JITTER 0.5 ns | I I
TS_12C_SCLK_in = PERIOD TIMEGRP "12C_SCLK | 1000.000ns | 16.310ns | 4
_in" 1 MHz HIGH 50% [ | |
TS_XLX1_107_U1_CLKO_BUF = PERIOD TIMEGRP | 20.000ns | 11.328ns | 2
"XLX1_107_U1_CLKO_BUF" TS_clIk50 HIGH | | [
50% I | I

TS_XLX1_107_U1_CLKDV_BUF = PERIOD TIMEGRP | 40.000ns | 24.596ns | 5
"XLX1_107_U1_CLKDV_BUF" TS_clk50 / 2 | | |
HIGH 50% | | |

TS_XLX1_107_U2_CLKO_BUF = PERIOD TIMEGRP | 10.000ns | 6.724ns | 3
"XLX1_107_U2_CLKO_BUF" TS_XLXI_10 | | [
7 _U1_CLK2X_BUF HIGH 50% | | |

TS_XLXI_107_U2_CLK180_BUF = PERIOD TIMEGR | 10.000ns | 8.364ns | 2
P "XLX1_107_U2_CLK180_BUF" TS_XLX | | [

1_107_U1_CLK2X_BUF PHASE 5 ns HIGH 50% | | |

All constraints were met.

Figure 4-3: Timing analysis of the slave node top-level design.

The timing summary of the master node top-level design is shown in Figure 4-4. The input clock
(TS_XLXI_123 U1_CLKO_BUF) is 50 MHz corresponding to 20 ns requested value. The requested value
for the LVDS input and output signal (TS_Ivds_clk_p) are 100 MHz (10 ns). The clock signals
generating the data in the LVDS out module is named TS _XLXI_123 U2 _CLKO BUF and
TS_XLXI_123 U2_CLK180 BUF. The low frequency clock signal of 25 MHz, that is driving slower
logic in the FPGA, is named TS_XLXI_123_U1_CLKDV_BUF. All of the signals mentioned above are set
with an appropriate constraint. All of the constraints have been met.
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Timing Summary:

Speed Grade: -4

Minimum period: 13.468ns (Maximum Frequency: 74.250MHZz)
Minimum input arrival time before clock: 3.847ns
Maximum output required time after clock: 8.912ns
Maximum combinational path delay: No path found

Multi pass post place and route constraint timing report:

Constraint | Requested | Actual | Logic
| Levels
TS_lvds_clk_p = PERIOD TIMEGRP "lvds_clk_ | 10.000ns ] 7.038ns ] O

p" 100 MHz HIGH 50% INPUT_JITTER 0.5 ns | | |

TS_XLXI_123 U1_CLKO_BUF = PERIOD TIMEGRP | 20.000ns | 14.650ns | 1

"XLX1_123 UL_CLKO_BUF" TS_cIk50 HIGH | | [
50% | | |

TS_XLXI_123 U1_CLKDV_BUF = PERIOD TIMEGRP | 40.000ns | 20.524ns | 4
"XLX1_123 U1_CLKDV_BUF" TS_clk50 / 2 | | |
HIGH 50% | | |

TS_XLXI_123 U2_CLKO_BUF = PERIOD TIMEGRP | 10.000ns | 5.405ns |1
“XLX1_123 U2_CLKO_BUF" TS_XLX1_12 | I [
3_U1_CLK2X_BUF HIGH 50% | | |

TS_XLXI_123 U2_CLK180 BUF = PERIOD TIMEGR | 10.000ns | 9.034ns | 2
P “XLX1_123_U2_CLK180_BUF" TS_XLX | I I

1_123 UL CLK2X_BUF PHASE 5 ns HIGH 50% | | |

All constraints were met.

Figure 4-4: Timing analysis of the master node top-level design.

4.3 Evaluation software

A test program on the host computer was specially programmed by a colleague of mine to test the
network. This program was programmed in C language and was able to read and write both 8-bit and
16-bit values to a chosen address on the ISA bus. The program checked if read data was the same as
the data written. If errors occurred, an error report was generated presenting the written and read value
that differed. The program was usually set to do thousands of accesses in a row. Values were written
to different registers in the network to test the RS232, 1°C and ISA bus interfaces at the network nodes.
When a LVDS link is referred to have a certain transfer speed, in the sections below, several
thousands accesses have been made using this program without any error reported.
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4.4 Hardware related trouble shooting and solved
problems

4.4.1 ISA reset and 1016# signals

The 1016# and reset signals on the ISA bus have to be driven with more current than the other signals
on the ISA bus. In the set-up used, all the signals on the ISA bus is connected to the FPGA via 100 Q
resistors. This works well for all the signals except the two mentioned. Some computers and devices
have strong pull-ups on these signals and the resistors used for these signals have to be modified to 30
Q so that the signal will be fast enough.

4.4.2 LVDS bus termination problems

The termination of the LVDS bus is of great importance when getting the communication to work. If
the network is not terminated correctly the signals will be corrupt due to reflections. In the tested
configurations below this has been a big issue. Even tough the point-to-point link configuration works
perfectly, other network configurations have been hard to stabilise. Consider the different test set-ups
below for a more detailed explanation.

4.4.3 Stabilising the LVDS channel

When no slave or master node is driving the LVDS link, the potential in the two wires are not stable.
This results in some false message generation. To avoid this, internal pull-up and pull-down resistors
are used in the master node FPGA. Usually external resistors are used, and a more optimal value
could then be chosen. If problems with the communication are found, external resistors that are more
accurate to the current design should be used.

4.4.4 FPGA breakdown

When using the on-chip LVDS drivers in different set-ups the logic in the FPGAs sometimes got
damaged due to problems with the LVDS links. The damaged logic in the FPGA made it very hot and
the FPGA had to be discarded. The breakdown of the FPGASs only occurred when several FPGAS was
connected to the same bus using the multipoint configuration.

The reason for this could be reflections on the LVDS bus due to bad termination. If a transceiver is
sending a message on the bus and gets a reflection, the input buffer close to the transmitter will receive
both the sent voltage level plus the reflected one. If the reflection is strong enough, the added voltage
levels may damage the FPGA. Sometimes, even when the terminations were chosen very carefully, the
FPGAs got destroyed.

The reason for breakdown could also be an unstable LVDS bus causing two different transmitters to
drive the bus at the same time. If the bus is unstable, the different slave nodes will receive noise-
generated messages at random. Eventually the error checking code will match the randomly received
data bits and if at the same time the address bits match the slave node, a respond message will be
generated. If another slave node or if the master node generates a message at the same time, two
transmitters would be driving the bus at the same time, destroying each other.

Generally a multipoint LVDS bus is very hard to terminate correctly [24]. When the multipoint
configuration was tested, two Hectronic H4070 boards were used and a short cable connected the
boards together. Unmatched connectors and on-board clock signals could make the LVDS bus
unstable, generating reflections and false messages.
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4.5 Hardware evaluation of the design

4.5.1 Oscilloscope plots of ISA bus transmissions

Figure 4-5 shows a distributed ISA bus access generated by the host computer by the use of the
IOWCH# signal. It also shows the CHRDY signal generated by the distributed network. The CHRDY
signal is held low until the distributed ISA bus access has ended. The distributed network then releases
the signal and the host computer ends the bus cycle. Figure 4-6 shows an interrupt request generated
by the distributed network. An interrupt is requested by holding the interrupt line low for a short time
and then release it again. In this design, the interrupt request signal is chosen to be held low for 60 ns'
according to the oscilloscope measurement in Figure 4-6.
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Figure 4-5: An ISA bus access from the host computer to the master node in the distributed network. The upper
channel displays the CHRDY signal and lower channel shows the IOWC# generated by the host
computer.

' 60 ns corresponds to three 50 MHz clock cycles.
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Figure 4-6: The channel shows an interrupt request generated by the distributed network.

4.5.2 Oscilloscope plots of LVDS bus transmissions

Because LVDS is a high-speed signal with frequencies up to 200 MHz in this project, the highest data
rates could not be analysed by the oscilloscope at hand. Therefore, the signal frequency shown in the
figures below are of only 25 MHz. Preliminary the plots below are presented to demonstrate the
transmission using DDR and a source synchronous clock.

Figure 4-7 shows how data is transmitted. One data bit is sampled at every rising and falling edge of
the clock signal. For example in this figure the data sequence 0-0-1-1-1-1-0-1-0-1 is transmitted.
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Figure 4-7: LVDS signals using DDR. This means that one data bit is sampled at every rising and falling edge
of the clock signal. The upper channel shows the data signal and the lower channel shows the clock

signal.
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In Figure 4-8 a 41-bit data access message is sent. In this figure no reply message is sent. When a
message is sent the LVDS driver will be set in a high impedance state as shown in Figure 4-9. If a
slave node with the accessed address exists on the bus, it will reply to the master node as shown in
Figure 4-10. Here the reply message is sent very short after the access because an internal register in
the slave node was accessed. Notice the high impedence state (tri-state) in the middle of the figure

when no driver is driving the bus.
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Figure 4-8: Data request message sent from the master node to the slave node. The slave node did not send a

reply message.
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Figure 4-9: The last bits of a message sent using DDR and the bus is then released when no transmitter is

driving it.
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Figure 4-10: The ending of a LVDS message requesting data from a register in a slave node FPGA and the
beginning of the reply message generated by the slave node containing the data in the accessed
register. Notice the high impedence state in the middle when no driver is driving the bus.

4.5.3 Test using two Spartan 3 starter kit boards

4.5.3.1 The set-up

The design in this section is tested using two Spartan 3 starter kit boards as shown in Figure 4-11 and
Figure 4-12. One board acts as a master node and the other one acts as a slave node. Internal pull-ups
on the LVDS link are used in the master node FPGA instead of external ones. This is to stabilise the
link, so that external noise does not fool the receivers to mistake the noise as data bits, when no node
is driving the bus. The cable between the boards is a 2 m twisted pair CAT5 type cable. The cable is

terminated in both ends.

Master node Slave node

Spartan 3 Spartan 3

R&232 starter kit S LVDS differential link ] starter kit
— board board

Host computer ISA bus

f——
T, RS232

r—
» I°C slave

Distributed ISA bus

Host
computer

Port h80
display card

Figure 4-11: The test set-up using two Spartan 3 starter kit boards.
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Figure 4-12: Test set-up using two Spartan 3 starter kit boards.

Figure 4-13: Left: A Spartan 3 starter kit board programmed as a mater node connected to the host computer via
the ISA bus. Right: A Spartan 3 starter kit board programmed as a slave node connected to one 8-
bit 1/0 card and one port 80h display card.

When the test is performed, the ISA bus is checked by the use of an oscilloscope. The LVDS transfer
is controlled by the tester component in the slave and master node FPGA. This component shows the
transfer results on a LED display and will turn on some specific diodes to indicate errors. The errors
indicated here is if a timer has timed out or if an error has occurred in the transmission (when the error
checking bits does not match). A host computer is used to read and write to registers on the distributed
data bus. The port 80 display card is displaying the value written to this address and the 8-bit 1/0 card
holds some registers that can be read from and written to.
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4.5.3.2 Test results

This set-up has been tested at different transfer rates at different LVDS bus lengths. When the LVDS
link is stable, all the design as described in chapter 3 works perfectly. This is the result of serious
testing using all the features of the network, including the 1°C, ISA and RS232 interfaces, interrupts
and internal register accesses.

The maximum transfer rate achieved in this set-up was 200 Mbaud on the LVDS link. The lengths of
the LVDS bus tested were up to 2 m. It also worked at lower data rates. It was hard to get the
termination to work properly because the resistors couldn’t be put close enough to the FPGA driver
pins, due to the board layout. When no termination was used the transmission worked best.

The resulting ISA bus transfer rate is about 1600 ns for a 16-bit access and roughly 1900 ns for an 8-
bit access. The resulting bit rate is then 10 Mbps and 4 Mbps respectively. If an internal register is
accessed in the slave node the access time is about 1200 ns. If two registers are accessed at a time 16
bits may be written every 1200 ns. This will result in a transfer rate of 13 Mbps. This should be
compared to the ordinary ISA bus access in a PC, where the ordinary 16-bit access has a transfer rate
of 43 Mbps and the ordinary 8-bit access has a transfer rate of 10.7 Mbps. More information about the
transfer rate in the ISA bus and the distributed ISA bus is found in the sections 2.4 and 3.8
respectively.

4.5.4 Test using one Hectronic H4070 board

4.5.4.1 The set-up

This set-up, as shown in Figure 4-14, is very similar to the set-up using the two starter kit boards
above. This set-up uses one H4070 board as shown in Figure 4-15. The difference is that mainly the
LVDS link was tested, while no interfaces except the ISA slave in the master node were. The registers
in the slave node were written to and read from. During these accesses, test logic in the FPGA checked
if the packages was received correctly on the LVDS bus. One LED-diode was lit when the message
was received with no errors and another one was lit when the error checking code did not match.
Different base addresses could be chosen for the slave node by the use of a 4-bit hexadecimal switch.
The slave node only replied when the accessed address matched with the address set by the
hexadecimal switch.

The big difference from the set-up using the starter kit boards above is the configuration of the LVDS
bus. The bus is configured as multipoint and not as point-to-point.
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Figure 4-14: Set-up using one Hectronic H4070 board connected to the host computer via the ISA bus.
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Figure 4-15: The Hectronic H4070 test board.
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4.5.4.2 Test results

Here it turned out to be quite hard to terminate the LVDS bus correctly. When this was done a
throughput of 400 Mbps was achieved at most. The network worked best with serial termination
resistors of 40 Q and parallel termination resistors of 100 Q.

Because of the difficulty to achieve a stable LVDS link, this arrangement should not be used when
only two FPGAs are communicating over an LVDS link. A point-to-point configuration is a much
better approach.

4.5.5 Test using two Hectronic H4070 boards

4.5.5.1 The set-up

The only difference of this set-up and the set-up above is that two Hectronic H4070 cards are used and
all the nodes are connected to the same LVDS bus. The 4070 board is shown in Figure 4-15 and the
set-up is shown in Figure 4-16 and has one master node and three slave nodes.
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Figure 4-16: Set-up using two Hectronic H4070 boards connected to the host computer via the ISA bus.

45.5.2 Test results

This configuration was never managed to work. A wide range of termination resistors were used but
messages were only received correctly at very rare occasions. The reflections and the LVDS bus
instability also destroyed several FPGAs that had to be changed. The reason for this is that a
multipoint network is very hard to configure [24].
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Chapter 5 — Conclusion

5.1 Conclusion

The distributed ISA bus network designed in this project is forming a good and flexible base for
further development. The program code is carefully built in a module like manner, which makes the
programmed modules easy to recombine to suit other applications.

Only four wires are used to carry the information between the network nodes and the transfer speed is
at least 200 Mbaud point-to-point using the LVDS standard. This results in an access time for the
distributed ISA bus network only three to four times longer than for the ordinary ISA bus. When
registers in a slave node are accessed the transfer rate is up to 12 Mbps.

The protocols supported by the network are the I°C, ISA and RS232 standards. The remaining
interfaces needed for a complete test system are not designed in this project and have to be designed in
the future.

The only problem that has to be investigated further is to stabilise the multipoint LVDS link.
Experience shows that the LVDS drivers in the FPGA are very sensitive to unmatched networks and
that a multipoint network is very hard to configure [24]. To solve this problem the network design
could easily be reconfigured into a star network using only point-to-point LVDS links. Because a
point-to-point configuration is simple to stabilise, using only two terminating resistors, this could be a
good solution. Only if the network has small dimensions, the number of transceivers is limited and
only short stubs are implemented, the multipoint network could work.

All the basic requirements of the distributed network, except for the physical LVDS link if a
multipoint network is considered, have been met so far. If a suitable solution for the physical LVDS
link could be found, the distributed network will have great opportunities to be further developed into
a complete test system.

5.2 The next step

The next step is to find a stable solution for the LVDS link and to develop more interface modules.
Because the system is easy to expand, only modules handling these interfaces has to be constructed.
When a new module is added it easily communicates to the distributed network via internal registers
in the FPGA. In the main design, only the internal register manager module and the address space has
to be slightly modified.

When the complete test system is working, the code should be optimised. This includes adjustments of
internal communication timers, compacting of the transmitted data blocks transmitted by the LVDS
links and optimisation of the clock frequencies used by the logic in the FPGAs.

The most important step to take next is to develop a stable physical LVDS link. When different
network configurations are evaluated, external drivers to protect the sensitive FPGAs are needed.
These could possibly also improve the signal integrity. Below are some guideline steps recommended
by me to improve the LVDS link.

e Consider the network configuration: Because a multipoint network is hard to configure,
another network configuration could be chosen. A star network configuration that only uses
point-to-point transmissions is a much easier approach. If there are no special needs for a
multipoint configuration, a star network should be considered.
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Use external drivers: Because several FPGAs have been destroyed during the network
configuration testing, external drivers should be chosen. These are much cheaper and are easy
to change for new ones. External drivers are also less sensitive than the on-chip FPGA drivers
because of thicker silicon. The driver can also be placed closer to the LVDS bus, shortening
the stub length. It could be possible that an external driver has lower impedance and produces
a better LVDS signal, as well.

Build a new test board: Several small test boards should be built especially to test the
multipoint configuration. Putting these boards together, an optimal network could be
configured and the true physical limitations of the network could be found.
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Chapter 6 — Discussion

Below different development strategies are discussed. These strategies points out several development
directions for the present system. These directions have great chances of making this system a
complete, highly flexible and robust test system.

6.1 The future test system design

The systems shown in the Figure 6-1 and Figure 6-2 gives an idea of how the final test system could
look like. The test object will have contact, via all its ports and buses, to the distributed network. The
test object will be able to receive test programs and test instructions from the host computer via for
example the ISA bus or the RS232 serial port. Communication tests can be made via the test objects
interfaces and the test result is reported back to the host computer. Because many slave nodes can be
connected to the master node at the same time, several test objects may be tested at the same time as
well. Different test configurations can be chosen and two examples of such configurations are
explained below.
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computer
java V.M. < » =
I I
Master MNode
LVDS differential link Slave Node
E| :
LVDS master LVDS Fj LVDS slave Test object 2
LVDS master e —
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Slave - Node
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Figure 6-1: A possible test configuration. All of the interfaces on the test objects are connected to one slave
node respectively.
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6.1.1 Two examples of test configurations

In this section two possible test procedures are explained. This is to give an idea and a base for a
discussion of how the test should be performed. In test procedure 1, the test object tests itself by
communicating to its own interfaces via the slave node. In test procedure 2, the host computer
manages the testing of all the interfaces of the test object, one by one. The test starts in the same way
for both procedures. The start of the test procedure is explained below:

1. First, the test object powers up and the port 80 codes are sent via the serial port and are
collected in a FIFO in the slave node.

2. The host computer polls all the slave nodes in the distributed network and stores a list of
available slave nodes. The port 80 codes in the specific slave nodes are also uploaded to the
host computer.

3. The host computer sends the test operating system code to a FIFO in the slave node. This test
operating system is to be downloaded and run by the test object. It will then perform
communication tests of the test objects peripherals. Test status registers are also set in the
slave node to inform the test object that it can start loading the test operating system.

4. The test object reads a test status register from a specific address on the ISA bus. If the test
operating system is available in the FIFO the test object starts to download the code. If no
message is found on the ISA bus, the test object signals that on the serial port. If the test
operating system code was ready but the ISA bus did not work, the signal on the serial port
will inform the test system about the error. The test operating system could then, as a second
option, be loaded via the serial port.

5. When the test object has completed the download, the test operating system will be run.

At this stage, when the test operating system is running on the test object, test procedures may
commence. Two examples of test procedures are given below.

6.1.1.1 Test procedure 1

The main feature in this example is that the test object tests its own interfaces. The test object
communicates through its ISA bus to the slave node and can in this way communicate to itself through
the other interfaces on the slave node. When the test is finished, the test object reports the result back
to the host computer.

The advantage of this configuration is that it is fast and simple. This is because the test object tests
itself and only uses the logic and interfaces corresponding to its slave node. No transfers between the
nodes in the network are needed during the test phase. The disadvantage could be that it is harder to
modify the test. Not only the instructions on the host computer has to be changed. The test operating
system has to be modified as well. Interfaces from several slave nodes can not be connected to the
same test object. This could be a disadvantage if the test object contains more interfaces than
supported by one slave node.

6.1.1.2 Test procedure 2

In test procedure 2, the host computer is mastering the test totally. The test operating system is
running on the test object and checks a few test status registers on the slave node, via its ISA bus, for
test instructions. The host computer then writes test instructions to the test status registers on the slave
node, instructing the test object to perform specific tasks. For example, a task could be to read or write
data to a specific port. If the task was to write, the host computer then will read from the specific
interface on the slave node, connected to that port, to check if the interface is working. In this way, all
interfaces of the test object can be tested.

The advantage of this configuration is that the host computer has complete control of the test. Also, if
only one port is to be tested, this is easily configured in the host computer. Another advantage is that
the interfaces of the test object may be connected to several slave nodes as shown in Figure 6-2. This
is because the host computer reaches all the nodes in the test system, in contrast to the test object that
only reaches the registers in the slave node connected to its ISA bus.

73



Host Server

computer

A
Y
IIII

‘ ISA master

Master Node

FPGA
ISA slave

£ [ILVDS master

LVDS master (] ¥
Slave Node b

Test object T [LvDs slave
|I | ISA slave ||ISA masier|

LVDS differential link

LVDS differential link

Slave i Node

FFmlL\.‘[ﬁJS slave
RS232

VGA

ISA master

Distributed ISA bus

(]
r
=z

<—|_. ISA I/O device
CAN

Figure 6-2: A possible test configuration. The interfaces on the test object are connected to two slave nodes.

6.1.2 Implementation of a center node

If the host computer cannot be close to the slave nodes, an extra center node can be implemented as
shown in Figure 6-3. This configuration is quite easy to implement but requires one more node type,

the center node.
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Figure 6-3: The distributed ISA bus network in a star configuration with an extra LVDS link from the master
node to the center node.
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6.1.3 A bigger FPGA instead of two smaller ones

The Hectronic H4070 board has two Spartan 3 XCS200 FPGAs in TQ144 package. These FPGAs can
be soldered by hand and are good for development purpose. In the final system there would probably
be more cost effective to use only one FPGA, but choosing a bigger one.

Because the slave node or the master node uses only one quarter of the internal logic in the XCS200
FPGA, they will probably be big enough even for the final test system. The most cost effective way is
to choose a package with enough pin counts. The XCS200 FPGA supports up to 173 user pins. If this
is not enough the next larger XCS400 FPGA supports up to 264 user pins and even more 1/O pins can
be achieved by choosing even bigger FPGAs.

6.1.4 Steps needed to develop a complete test system

This section explains what needs to be developed to complete the test system. The main part of the
distributed test system has been developed in this project. New modules to manage all the interfaces,
that need to be tested, have to be developed. The main parts of the distributed system have not to be
changed much. The register manager has only to be expanded into more registers and the address
space used by the nodes is easily modified. To optimise the upload to the test object a FIFO could be
designed. The possible future development tasks are explained below.

6.1.4.1 Implementing a FIFO speeding up the program code upload to the test object

The program code has to be uploaded to the test object. This could be done via several ports or buses,
but the ISA bus might be the most suitable one. A memory mapped ISA interface can be used to
address all the program code to be uploaded. Because the FPGAs BRAM memory is limited, it can not
store all the program code at once. To solve this problem only parts of the code can be uploaded and
stored in the FPGA at a time. A FIFO device is a good approach to buffer the data. The FIFO could
store big blocks of data and one block could be read from the test object via the ISA bus, while
another data block could be uploaded from the host computer at the same time. The status of the FIFO
and the base address of the data block could be read from registers and the test object could load one
data block at a time. This will not need a big address space and the ISA modules supporting only 1/0
device accesses might be enough. The Figure 6-4 shows the implementation of the FIFO.

Data from the
host computer LVDS differential link
via the master
node

Slave Node

% [LvDS slave Test object
State ISA slave JSA master.
machine S

v
Register : Data block
manager FIFO

Figure 6-4: Possible implementation of the program upload to the test object using a data block FIFO.

6.1.4.2 Developing new modules in the FPGA

In this project, only a few interfaces have been made. To perform a complete test of the test object,
new modules has to be constructed so that all the interfaces on the test object can be connected. These
modules are easily implemented in FPGASs as they only connect via the register manager. When a new
module is connected, more registers in the register manager have to be added and the address space
has to be modified to include the new registers. The RS232 and the I°C modules are examples of
interface modules that have only been connected via the register manager.
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6.1.4.3 Memory mapped ISA

The ISA modules are in this design 1/0-device mapped. The address space available is here very
limited. If more address space is needed, a good approach is to change the ISA modules to be memory
mapped. In the memory-mapped configuration, the address space is broader and the ISA bus access
cycle looks slightly different. This has to be modified in the new design but is not very time
consuming. A change to memory mapped ISA could therefore be a good approach in the final design.

6.1.4.4 Optimising

The purpose of the design in this project is to try different configurations and to form a good and
flexible base for further developments. From this design a complete test system can be built. Some of
the code is made very flexible so that it will be easy to change it in case different ideas come up. These
parts of the code have therefore no need to be optimised in this development stage. The optimisation
of the communication has to be made at a later stage when a more complete design is tested properly.
Some of the major areas where the design could be optimised are explained in the list below.

e LVDS data block: The data block transferred between the master node and the slave node is
the same as the data block transferred back. The Figure 3-7 on page 36 shows the general-
purpose data block where many of the bits transferred are never used. For example, 3 info-bits
are never used and the 8 error checking bits are taking up much space. When data is
transferred back from the slave node to the master node the address bits are never used. To
improve the LVDS link cycle time these bits could be removed or decreased.

e LVDS transmission speed: A 50 MHz clock is used to generate the data and clock signals in
the LVDS out module. In this design, 2 DCMs are cascaded to generate the higher clock
frequencies of 100 to 150 MHz. If an input clock of a higher data rate is used, only one DCM
is needed and higher quality will be achieved in the clock and data signals. If a higher data-
rate and a better communication channel could be used the LVDS transmission cycle would be
shortened.

e Internal timers in the FPGA: The timers used in the FPGA are controlling the data flow.
Adjusting the timers can shorten the LVDS link cycle. If the LVDS master transmission timer
and the LVDS slave transmission timer are adjusted to shorten the acceptable response time
from the slave node, the bus cycle will be shorter when the addressed node does not exist.

e Clock frequencies in the FPGA: The FPGA has several internal clock domains. This is
because some code is not able to run as fast as some code in other parts of the FPGA. These
frequencies can be optimised to run at the highest allowed speed in all parts of the FPGA
respectively.
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Appendix A — Design hierarchy

A.1 Master node code hierarchy

B Master_Mode.iz=
- £ wc2s200-4f255
= @ mazter_node_topl
@ master_node_toplesvel uct
@ data_to_lds_out [data_to_leds_outzch]
+ @ ermor_code_generator-behavioral [Emor_code_generatar.vhd]
= @ LwDS_link_out [LWDS_link_out.zch]
E data_rearder_lvds_out-behawvioral [data_reorder_vds_out vhd)
|E| zhift_pizo_nbit-behavioral [ghift_pizo_nbit.vhd]
|E| whid|_counter-behavioral [vhdl_counter. vhd)
# DCM_Cazcade_Multiclock [DCM_Cazcade Multichock, saw]
@ internal_register_manager_mnode-behavioral [Internal_register_manager_MMode.vhd]
E ir_out-behavioral [IRG_out.vhd)
irq_timer-biehaviaral [|RG_timer vhd]
iza_busz_15uz_timer-behavioral [154_buz_150s_timer, vhd]
iza_input_flipflop-behavioral [154_Input_flipflop.vhd)

[
[
[
+ @ iza_slave-behavioral [154_slave. vhd)
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level [master_nodetoplevel zch)
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led_dizplapddigit-behavioral [LED_dizplayddiagit. vhd)
Ivds_masgter_tranzm_timer-behavioral [LYDS_master_transm_timer. vhd]
Iwds_to_data_in [Iwds_to_data_in.zch)
@ ermor_code_checker-behavioral [Error_code_checker, vhd]
= @ Ivdz_link_in [ledz_link_in.zch]
|E| data_rearder_lvds_in-behaviaral [data_rearder_Iwds_in vhd]
|E| zhift_gipo-behaviaral [shift_sipo.vhd)
|E| zhift_zipo_fullout-behavioral [zhift_sipo_fullout vhd]
+ @ master_node_state_machine-behavioral (Master_node_state_machine, vhd]
@ tester-behavioral [tester. vhd)
-8 UART_RS232 [UART_R5232 zch)
baud_rate_clk-behavioral [Baud_rate_clk. vhd]
bbfifo_16xE-low_level_definition [bbfifo_1Ex8.vhd)
kcuart_r-low_level_definition [kouart_rs. vhd]
kcuart_bw-love_lewvel_definition [kouart_ts.whd)
uart_reqisters-behavioral [LART _reqisters. whd]
E unuzed_z_outpute-behavioral [unuged 2 _outputs. vhd]
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A.2 Slave node code hierarchy
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= @ data_to_lwds_out [data_to_hds_out.zch)
@ emar_code_generator-behavioral [Eror_code_generatar. vhd)

= @ LwvDS_link_out [LVDS_link_out.sch]

E data_rearder_lvds_out-behawvioral [data_rearder_keds_out.vhd)
E zhift_pizo_nbit-behavioral [zhift_pizo_nbit. vhd]
@ whdl_counter-behavioral [whdl_counter. vhd]
# DCM_Cazcade Multiclock [DCM_Cascade_Multiclock. maw]
= @ 12C_slave [12C_slave.zch)
@ i2c_contraller-behavioral [12C_contraller. vhd)
@ i2c_pizo-behavioral [[2C_PIS0.vhd]
@ i2c_register_selector-behavioral [I2C_register_selectar.vhd)
@ i2c_zipo-behaviaral [12C_SIP0 . vhd)
@ i2c_start_signal_detector-behavioral [|2C_zstart_signal_detectar.vhd)
internal_register_manager_snode-behavioral [Internal_register_manager_5Mode.vhd)]
irg_in-behavioral [|RGQ_in.vhd)
iza_mazter-behavioral [|54_mazter. vhd)
iza_mazter_input_flipflop-behavioral [154_master_input_fipflop.whd]
1za_mazter_termination-behawioral [154_master_termination, shd]
led_dizplay4digit-bebavioral [LED_displapddigit. vhd)]
ledz_to data_in [ledz_to_data_in.zch]
@ eror_code_checker-behawvioral [Eror_code_checker vhd)
- @ Ivdz_link_in [Ivds_link_in.zch]

E data_rearder_lvds_in-behavioral [data_rearder_lvds_in.vhd)

E ghift_zipo-behawviaral [zhift_sipo.whd]

E ghift_zipo_fullout-behaviaral [zhift_zipo_fullout. vhd]
#lave_node_state_machine-behavioral [Slave_node_state_machine. whd]
zlave_tranzm_timer-behavioral [zlave_transmizzion_timer. vid]
tester-behavioral [tester. whd]

UART_RS232 [UART_RS232 sch)

@ baud_rate_clk-behavioral [Baud_rate_clk.whd]
@ bbfifo_1ExS-low_level definition [bbfifo_1Ex8.vhd)
@ kcuart_ra-low_level_definition [kouart_n whd)

@ kcuart_te-lowe_level_defintion [kouart_ts. whd]

@ uart_regizters-behavioral [UART _reqisters.vhd]
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Appendix B — Source code

B.1 Error_code_generatior.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

—-- Design Name:
—-- Module Name:
-- Project Name:

-- Target Device:
-- Tool versions:

Master Node and Slave Node
Error_code_generator - Behavioral
Distributed I1SA

inx - Spartan 3

Xilinx - ISE WebPACK 7.1i

-- Description: Generates the error checking code in the
- data block transmitted by Ivds between
- modules.

-- Revision: 14

—-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC_1164.ALL;

use IEEE.STD_LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Error_code_generator is
--This module has a 8 ns delay => 125 Mhz max
Port ( a_out : out std_logic vector(39 downto 0);
Data_in_1 : in std_logic vector(15 downto 0);

a(15 downto 0) <= Data_in;
a(25 downto 16) <= address_in;
a(29 downto 26)<= Infobits;
a(30) <= SBHE;

a(31l) <= Readl_writeO;

a(39 downto 32) <= ERR_code;

Data_in <= Data_in_1;
Address_in <= Address_in 1;
Readl write0 <= Readl write0_1;
SBHE <= SBHE_1;

Infobits <= Infobits_1;

--The following code generates the
--steps using xor gates.

ERR_1(0) <= a(0) xor a(16);
ERR_1(1) <= a(l) xor a(17);
ERR_1(2) <= a(2) xor a(18);
ERR_1(3) <= a(3) xor a(19);
ERR_1(4) <= a(4) xor a(20);
ERR_1(5) <= a(b) xor a(2l);
ERR_1(6) <= a(6) xor a(22);
ERR_1(7) <= a(7) xor a(23);

Address_in 1 :
Readl_write0 1 :
in std_logic;

SBHE 1 :
Infobits_1 :

in std_logic_vector(9 downto 0);
in std_logic;

in std_logic_vector(3 downto 0));

end Error_code_generator;

architecture Behavioral of Error_code_generator is
signal a : std_logic_vector(39 downto 0);

signal ERR_1 : std_logic_vector(7 downto 0);
signal ERR_2 : std_logic_vector(7 downto 0);
signal ERR_code : std_logic_vector(7 downto 0);

signal Data_in : std_logic_vector(15 downto 0);
signal Address_in : std_logic_vector(9 downto 0);
signal Readl writeO : std logic;

signal SBHE : std_logic;
signal Infobits : std logic vector(3 downto 0);
begin
a out <= a; -- The output data block including both data

-- and error check bits.

ERR_2(0) <=
ERR 2(1) <=
ERR 2(2) <=
ERR_2(3) <=
ERR 2(4) <=
ERR_2(5) <=
ERR_2(6) <=
ERR_2(7) <=

ERR_code(0)
ERR_code(1)
ERR_code(2)

a(8) xor a(24);
a(9) xor a(25);
a(10) xor a(26);
a(11l) xor a(27);
a(12) xor a(28);
a(13) xor a(29);
a(14) xor a(30);
a(15) xor a(31);

error check code in two

<= ERR_1(0) xor ERR 2(0);
<= ERR_1(1) xor ERR 2(1);
<= ERR_1(2) xor ERR_2(2);

ERR_code(3) <=
ERR_code(4) <=
ERR_code(5) <=
ERR_code(6) <=
ERR_code(7) <=

ERR_1(3) xor
ERR_1(4) xor
ERR_1(5) xor
ERR_1(6) xor
ERR_1(7) xor

ERR_2(3);
ERR_2(4);
ERR_2(5);
ERR_2(6);
ERR_2(7);

end Behavioral;

B.2 Data reorder LVDS out.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

—-- Design Name: Master Node and Slave Node

-- Module Name:
-- Project Name:

-- Target Device:
—-- Tool versions:

—-- Description:
-- Revision:

-- Revision date:

data_reorder_lvds_out - Behavioral
Distributed I1SA

Xilinx - Spartan 3

Xilinx - ISE WebPACK 7.1i
Reorders data wires between buses
14

20 June 2005

library IEEE;

use IEEE.STD _LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL ;

entity data reorder_lvds_out is

data_out_first(6) <=
data_out_first(7) <=
data_out_first(8) <=
data_out_first(9) <=
data_out_first(10) <=
data_out_first(1l) <=
data_out_first(12) <=
data_out_first(13) <=
data_out_first(14) <=
data_out_first(15) <=
data_out_first(16) <=
data_out_first(17) <=
data_out_first(18) <=
data_out_first(19) <=
data_out_first(20) <=

data_out_second(0) <=
data_out_second(l) <=
data_out_second(2) <=
data_out_second(3) <=

data_in(12);

data_in(14);

data_in(16);

data_in(18);
data_in(20);
data_in(22);
data_in(24);
data_in(26);
data_in(28);
data_in(30)
data_in(32)
data_in(34)
data_in(36)
data_in(38)
e

0"
data_in(1);
data_in(3);
data_in(5);
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Port ( data_out first : out std_logic_vector(20 downto 0); data_out_second(4) <= data_in(7);

data out_second : out std logic_vector(20 downto 0); data_out_second(5) <= data_in(9);
data_in : in std logic vector(39 downto 0)); data_out_second(6) <= data_in(11);
data_out_second(7) <= data_in(13);
end data_reorder_lvds_out; data_out_second(8) <= data_in(15);
data_out_second(9) <= data_in(17);
architecture Behavioral of data_reorder_lvds_out is data_out_second(10) <= data_in(19);
begin data_out_second(1l) <= data in(21);

data_out_second(12) <= data_in(23);
—-- Data from input is split up into two data buses connected to | data_out second(13) <= data in(25);

-- two shift registers. Data from the shift registers is then data_out_second(14) <= data_in(27);
-- sent by the use of DDR. data_out_second(15) <= data_in(29);
data_out_second(16) <= data_in(31);
data_out_first(0) <= data_in(0); data_out_second(17) <= data_in(33);
data_out_first(l) <= data_in(2); data_out_second(18) <= data_in(35);
data_out_first(2) <= data_in(4); data_out_second(19) <= data_in(37);
data_out_first(3) <= data_in(6); data_out_second(20) <= data_in(39);
data_out_first(4) <= data_in(8);
data_out_first(5) <= data_in(10); end Behavioral;

B.3 Shift_PISO_nbit.vhd

—-- Company: Hectronic AB
-- Engineer: Johan Johansson

—-- Design Name: Master Node

-- Module Name: shift_piso nbit - Behavioral

-- Project Name: Distributed ISA

—-- Target Device: Xilinx - Spartan 3

—-- Tool versions: Xilinx - ISE WebPACK 7.1i

—-- Description: Shift register parallel in serial out
-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD_LOGIC 1164 .ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity shift_piso_nbit is
generic (reg_width: integer:= 21); --reg_width = number of bits on the input
Port ( clk, reset, shift _en, load : in std_logic;
d_in : in std_logic_vector(reg_width-1 downto 0);
shift_out : out std_logic);
end shift _piso_nbit;

architecture Behavioral of shift piso nbit is
signal shift_reg:std_logic_vector(reg_width-1 downto 0);
signal loaded:std _logic:="0";
begin
process(clk, reset)
begin
if reset="1" then
shift_reg <= (others => "0%);
loaded <= "0~;
elsif clk"event and clk="1" then
if load="0" then
loaded<="0";
end if;
if load="1" and loaded="0" then -- waits for the load signal to go low again before
-- reloading the shift register
loaded<="1";
shift_reg <= d_in;
elsif shift_en="1" then

shift_reg(reg_width-1 downto 1) <= shift_reg(reg_width-2 downto 0); --Shifts the register
shift_reg(0) <= "0%;
end if;
end if;

end process;
shift_out <= shift_reg(shift_reg“high); --shift_reg(highestbit) => outputs the highest bit
end Behavioral;
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B.4 VHDL_counter.vhd

architecture Behavioral of vhdl_counter is

—-- Company: Hectronic AB signal a : std logic_vector(4 downto 0):= ""00000";
—-- Engineer: Johan Johansson signal count_is_started, do_count : std logic;
-— begin

—-- Design Name: Master Node pO:process(clk_to_count, reset)

-- Module Name: vhdl_counter - Behavioral begin

-- Project Name: Distributed 1SA if reset = 1" then

—-- Target Device: Xilinx - Spartan 3 a <= ""00000";

—- Tool versions: Xilinx - ISE WebPACK 7.1i count_full <= "1%;

-- Description: Keeps track of the data shifted out through count_is_started <= "0%;

- the shiftregisters. When count full = "1° do_count <= "0%;

- all data is shifted out. elsif rising_edge(clk_to_count) then

-- Revision: 14 if start_count = 0" then

-- Revision date: 20 June 2005 count_is_started <= "0";

elsif count_is_started = "0" then

library IEEE; —-- timer

use IEEE.STD_LOGIC_1164.ALL; count_is_started <= "17;
use IEEE.STD_LOGIC_ARITH.ALL; do_count <= "1%;

use IEEE.STD_LOGIC_UNSIGNED.ALL; end if;

if a < "10110" and do_count = "1% then
a<= a+1;

entity vhdl_counter is count_full <= "0";
Port ( clk_to_count, reset : in std_logic; elsif do_count = "1" then
start_count : in std logic; a <= ""00000";
count_full : out std_logic); count_full <= "17;
end vhdl_counter; do_count <= "0%;
end if;
end if;

end process;
end Behavioral;

-- The signal start_count has to go low again before restart of

B.5 Internal_register_manager_ MNode.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

—- Design Name: Master Node

—- Module Name: Internal_register_manager_MNode - Behavioral
-- Project Name:
-- Target Device:
—-- Tool versions: Xilinx - ISE WebPACK 7.1i

-- Description: Handles the registers in the Masternode
-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC_1164.ALL;

use IEEE.STD LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC _UNSIGNED.ALL;

entity Internal_register_manager_MNode is
Port ( clk, reset : in std_logic;

Data_in : in std_logic_vector(15 downto 0);
Data_out : out std_logic vector(15 downto 0);
Address_in : in std_logic_vector(9 downto 0);
Read : in std_logic;
Write : in std_logic;
SBHE : in std_logic;
reg_transmission_ok : out std_logic;

UART_Transmitter_holding_reg : out std_logic_vector(7 downto 0);
UART_Transmitter_holding_reg_write : out std_logic;
UART_Receiver_buffer_reg : in std_logic_vector(7 downto 0);
UART_Receiver_buffer_reg_read : out std logic;
Master_bus_control_reg : out std logic_vector(7 downto 0);
UART_Divisor_low_byte : out std_logic_vector(7 downto 0);
UART_Divisor_high byte : out std logic_vector(7 downto 0);
Fifo_status reg : in std_logic_vector(7 downto 0);
Master_node_conf_low_byte : out std_logic_vector(7 downto 0);
Master_node_conf_high_byte : out std_logic_vector(7 downto 0));

end Internal_register_manager_MNode;
architecture Behavioral of Internal_register_manager_MNode is

-- Generates internal signals so that the data on the outputs may be read back again
—-- This should have the same effect as if "buffer” is used instead of "out”.
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-- Because the "buffer” declaration has sometimes been misinterpreted by the compiler
—-- this method is used instead, for safety reson.

signal UART_Transmitter_holding_reg_sig : std_logic_vector(7 downto 0); --Declaration of a register
signal UART_Transmitter_holding_reg write_sig : std logic; --Signals to the UART that data has been written from register
signal UART_Receiver_buffer_reg read sig : std logic; --Signals to the UART that data has been read from register

signal Master_bus_control_reg_sig : std logic_vector(7 downto 0);
signal UART Divisor_low_byte sig : std_logic_vector(7 downto 0);
signal UART_Divisor_high_byte sig : std_logic_vector(7 downto 0);

signal reg_transmission ok _sig : std_logic; --Signals that data register read or write request is done.

signal Scratch_reg_sig : std_logic_vector(7 downto 0);
signal Master_node_conf_low_byte sig : std_logic_vector(7 downto 0);
signal Master_node_conf_high_byte sig : std_logic_vector(7 downto 0);

begin

UART_Transmitter_holding_reg <= UART_Transmitter_holding_reg_sig;
UART_Transmitter_holding_reg write <= UART_Transmitter_holding_reg_write_sig;
UART_Receiver_buffer_reg_read <= UART_Receiver_buffer_reg read_sig;

reg_transmission_ok <= reg_transmission_ok_sig;

Master_bus_control_reg <= Master_bus_control_reg_sig;
UART_Divisor_low_byte <= UART_Divisor_low_byte_sig;
UART_Divisor_high_byte <= UART_Divisor_high byte sig;
Master_node_conf_low_byte <= Master_node_conf_low_byte sig;
Master_node_conf_high_byte <= Master_node_conf_high_byte_sig;
Master_node_conf_low_byte <= Master_node_conf_low_byte sig;
Master_node_conf_high_byte <= Master_node_conf_high_byte_sig;

process(clk, reset)
begin
if reset = "1" then

UART_Transmitter_holding_reg_sig <= (others => "0%);
UART_Transmitter_holding_reg write_sig <= "0";
UART_Receiver_buffer_reg_read sig <= "0%;
Master_bus_control_reg_sig <= (others => "07);
UART_Divisor_low_byte _sig <= (others => "0%);
UART_Divisor_high_byte_sig <= (others => "0%);
reg_transmission _ok_sig <= "0";
Scratch_reg_sig <= (others => "0%);
Master_node_conf_low_byte sig <= (others => "0%);
Master_node_conf_high_byte_sig <= (others => "0%);

elsif rising_edge(clk) then
if UART_Transmitter_holding_reg write_sig = "1" or UART_Receiver_buffer_reg_read sig = "1" then
UART_Transmitter_holding_reg_write_sig <= "0";
UART_Receiver_buffer_reg_read sig <= "0";
elsif reg_transmission ok _sig = "1" then
if read = 0" and write = "0" then
reg_transmission _ok_sig <= "0%;
end if;
elsif read = 1% then Read from registers
reg_transmission ok sig <= "17;
if SBHE = "1" then --SBHE=1 => Signal bus is not high enabled - 8bit
case address_in is
when 11" & X"E8" => --1000
Data_out(7 downto 0) <= UART_Receiver_buffer_reg;
UART_Receiver_buffer_reg_read sig <= "17;
when 11" & X"E9" => --1001
Data_out(7 downto 0) <= Master_bus_control_reg_sig;
when 11" & X"EA"™ => --1002
Data_out(7 downto 0) <= UART_Divisor_low_byte sig;
when 11" & X"EB" => --1003
Data_out(7 downto 0) <= UART_Divisor_high byte_sig;
when ""11" & X"EC" => --1004
Data_out(7 downto 0) <= Fifo_status_reg;
when ""11" & X"ED" => --1005
Data_out(7 downto 0) <= Scratch_reg_sig;
when ""11" & X"EE"™ => --1006
Data_out(7 downto 0) <= Master_node_conf_low_byte sig;
when 11" & X"EF" => --1007
Data_out(7 downto 0) <= Master_node_conf_high byte_sig;
when others =>
Data_out(7 downto 0) <= X"FF;
end case;
else --SBHE=0 => Signal bus is high enabled - 16bit
case address_in is
when 11" & X"E8" => --1000
Data_out(7 downto 0) <= UART_Receiver_buffer_reg;
UART_Receiver_buffer_reg_read_sig <= "17;
Data_out(15 downto 8) <= Master_bus_control_reg_sig;
when 11" & X"E9" => --1001
Data_out(15 downto 8) <= Master_bus_control_reg_sig;
when 11" & X"EA" => --1002
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Data_out(7 downto 0) <= UART_Divisor_low_byte sig;
Data_out(15 downto 8) <= UART_Divisor_high_byte sig;
when 11" & X"EB" => --1003
Data_out(15 downto 8) <= UART_Divisor_high_byte sig;
when 11" & X"EC" => --1004
Data_out(7 downto 0) <= Fifo_status reg;
Data_out(15 downto 8) <= Scratch reg_sig;
when ""11" & X"ED" => --1005
Data_out(15 downto 8) <= Scratch reg_sig;
when ""11" & X"EE" => --1006
Data_out(7 downto 0) <= Master_node_conf_low_byte sig;
Data_out(15 downto 8) <= Master_node_conf_high_byte sig;
when 11" & X"EF" => --1007
Data_out(15 downto 8) <= Master_node_conf_high_byte sig;
when others =>
Data_out <= X"FFFF'";
end case;
end if;
elsif write = 1" then

Write to registers

reg_transmission_ok_sig <= "1%;
if SBHE = "1" then --SBHE=1 => Signal bus is not high enabled - 8bit
case address_in is
when ""11" & X"E8" => --1000
UART_Transmitter_holding_reg_sig <= Data_in(7 downto 0);
UART_Transmitter_holding_reg_write_sig <= "1%;
when 11" & X"E9" => --1001
Master_bus_control_reg_sig <= Data_in(7 downto 0);
when 11" & X"EA"™ => --1002
UART_Divisor_low_byte_sig <= Data_in(7 downto 0);
when ""11" & X"EB" => --1003
UART_Divisor_high_byte sig <= Data_in(7 downto 0);
when 11" & X"ED" => --1005
Scratch_reg_sig <= Data_in(7 downto 0);
when 11" & X"EE" => --1006
Master_node_conf_low_byte sig <= Data_in(7 downto 0);
when 11" & X"EF'" => --1007
Master_node_conf_high_byte sig <= Data_in(7 downto 0);
when others => null;
end case;
else --SBHE=0 => Signal bus is high enabled - 16bit
case address_in is
when "11" & X"E8" => --1000
UART_Transmitter_holding_reg_sig <= Data_in(7 downto 0);
UART_Transmitter_holding_reg write_sig <= "1°;
Master_bus_control_reg_sig <= Data_in(15 downto 8);
when ""11" & X"E9" => --1001
Master_bus_control_reg_sig <= Data_in(15 downto 8);
when ""11" & X"EA"™ => --1002
UART_Divisor_low_byte_sig <= Data_in(7 downto 0);
UART_Divisor_high_byte_sig <= Data_in(15 downto 8);
when 11" & X"EB" => --1003
UART_Divisor_high_byte_sig <= Data_in(15 downto 8);
when ""11" & X"ED" => --1005
Scratch_reg_sig <= Data_in(15 downto 8);
when 11" & X"EE" => --1006
Master_node_conf_low_byte sig <= Data_in(7 downto 0);
Master_node_conf_high_byte_sig <= Data_in(15 downto 8);
when 11" & X"EF'" => --1007
Master_node_conf_high_byte_sig <= Data_in(15 downto 8);
when others => null;
end case;
end if;
end if;
end if;
end process;
end Behavioral;

B.6 IRQ out.vhd

—-- Company: Hectronic AB
-- Engineer: Johan Johansson

Master Node
IRQ_out - Behavioral

—-- Design Name:
-- Module Name:
-- Project Name:
-- Target Device:
-- Tool versions:

Xilinx - ISE WebPACK 7.1i

—-- Description: Generates the interrupt signals to the host
- computer
-- Revision: 14

-- Revision date: 20 June 2005

1RQ7

if IRQ_signal_state = 00" then
IRQ_signal_state <= "01";
IRQ7_sig <= "0";

elsif IRQ_signal_state = 01" then
IRQ_signal_state <= "10";
IRQ7_sig <= "0";

elsif IRQ_signal_state = "10" then
IRQ_signal_state <= "11";
IRQ7_sig <= "0";

elsif IRQ_signal_state = 11" then
IRQ_signal_state <= "'00";
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library IEEE;

use IEEE_STD LOGIC_1164_ALL;

use IEEE.STD_LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity IRQ out is
Port ( clk, reset: in std_logic;
IRQ_in : in std_logic;
IRQ_poll_ok : in std_logic;
IRQ_next_ready_out : out std_logic;
—--indicates that module is ready to get IRQ poll result from
—--the IRQ specified in the 4 bit number on the IRQ_count bus
IRQ3, IRQ4, IRQ5, IRQ6, IRQ7, IRQ9, IRQ10, IRQ11l, IRQ12,
1IRQ13, IRQ14: out std_logic;
IRQ_count : out std_logic_vector(3 downto 0));
end IRQ out;

architecture Behavioral of IRQ out is
signal IRQ3_sig, IRQ4_sig, IRQ5 sig, IRQ6_sig, IRQ7_sig,

IRQ9_sig, IRQ10_sig, IRQ11_sig, IRQ12 sig, IRQ13 sig, IRQ14 sig:

std_logic;

signal IRQ_state : std_logic_vector(3 downto 0);

signal IRQ_signal_state : std logic_vector(1l downto 0);
—-- 00=signal to 0, Ol=wait, 10=wait, ll=signal to Z (=1)
signal IRQ_next_ready : std logic;

begin

IRQ_count <= IRQ_state;

IRQ_next_ready out <= IRQ_next ready;

IRQ3 <= "0" when IRQ3_sig = "0" else "Z"; --defines a latch
—--with signal = "0" and an enable signal
IRQ4 <= "0" when IRQ4_sig = "0" else "Z°;
IRQ5 <= "0" when IRQ5_sig = "0" else "Z";
IRQ6 <= "0" when IRQ6_sig = "0" else "Z";
IRQ7 <= "0" when IRQ7_sig = "0" else "Z";
IRQ9 <= "0" when IRQ9_sig = "0" else "Z";
IRQ10 <= "0 when IRQ10_sig = "0 else "Z~7;
IRQ11 <= "0" when IRQ11l_sig = "0" else "Z";
IRQ12 <= "0" when IRQ12_sig = "0" else "Z";
IRQ13 <= "0" when IRQ13 sig = "0" else "Z";
IRQ14 <= "0 when IRQ14_sig = 0" else "Z°;

process(clk, reset)
begin
if reset="1" then
IRQ_state <= ""0011"; --IRQ3 of all
--1RQ=(3,4,5,6,7,9,10,11,12,13,14)
IRQ_next_ready <= "0%;
IRQ_signal_state <= "00";
IRQ3_sig <= "17;
IRQ4_sig <= "17;
IRQ5_sig <= "17;
IRQ6_sig <= "17;
IRQ7 sig <= "17;
IRQ9_sig <= "1";
IRQ10_sig <= "17;
IRQ11 sig <= "17;
IRQ12_sig <= "17;
IRQ13 sig <= "17;
IRQ14_sig <= "17;
elsif rising_edge(clk) then
if IRQ_poll_ok = "1" and IRQ next _ready = "1" then
case IRQ_state is

when 0011 => 1RQ3
if IRQ_in = 1" then
—-if the irg has been pulled on a slave node the master node
—--pulls the corresponding interrupt and holds it for 3 clock
--cycles (internal clk)

if IRQ_signal_state = 00" then
IRQ_signal_state <= "01";
IRQ3_sig <= "0";

elsif IRQ_signal_state = 01" then
IRQ_signal_state <= "'10";
IRQ3_sig <= "07;

elsif IRQ_signal_state = 10" then
IRQ_signal_state <= ""11";
IRQ3_sig <= "0";

elsif IRQ signal_state = 11" then
IRQ_signal_state <= "'00";
IRQ3_sig <= "17;
IRQ_next_ready <= "0";
IRQ_state <= ""0100"; --sets the next IRQ to be

—-polled
end if;

IRQ7_sig <= "17;
IRQ_next_ready <= "0%;
IRQ_state <= '"1001";
end if;
else
IRQ7_sig <= "17;
IRQ_next _ready <= "0%;
IRQ_signal_state <= "'00";
IRQ_state <= '1001";
end if;
when '1001" => 1RQS

if IRQ_in = "1 then
if IRQ_signal_state = "00" then
IRQ_signal_state <= "01";
IRQ9_sig <= "0";
elsif IRQ signal_state = "01" then
IRQ_signal_state <= "10";
IRQ9_sig <= "0";
elsif IRQ_signal_state = 10" then
IRQ_signal_state <= "11";
IRQ9_sig <= "0";
elsif IRQ_signal_state = 11" then
IRQ_signal_state <= "00";
IRQ9_sig <= "17;
IRQ_next_ready <= "0~;
IRQ_state <= '"1010";
end if;
else
IRQ9_sig <= "17;
IRQ_next_ready <= "0%;
IRQ_signal_state <= "00";
IRQ_state <= '1010";
end if;
when **1010" => 1IRQ10

if IRQ_in = "1 then
if IRQ_signal_state = 00" then
IRQ_signal_state <= "01";
IRQ10 _sig <= "0";
elsif IRQ signal_state = "01" then
IRQ_signal_state <= "10";
IRQ10 _sig <= "0";
elsif IRQ _signal_state = 10" then
IRQ_signal_state <= "11";
IRQ10_sig <= "07;
elsif IRQ_signal_state = 11" then
IRQ_signal_state <= "'00";
IRQ10_sig <= "17;
IRQ_next_ready <= "0";
IRQ_state <= ""1011";
end if;
else
IRQ10_sig <= "17;
IRQ_next, ready < "0%;
IRQ_signal_state <= "00";
IRQ_state <= ""1011";
end if;
when ''1011" => 1RQ11

if IRQ_in = "1" then
if IRQ_signal_state = 00" then
IRQ_signal_state <= "'01";
IRQ11_sig <= "0%;
elsif IRQ _signal_state = "01" then
IRQ_signal_state <= ""10";
IRQ11_sig <= "0";
elsif IRQ _signal_state = 10" then
IRQ_signal_state <= ""11";
IRQ11_sig <= "0";
elsif IRQ_signal_state = 11" then
IRQ_signal_state <= "00";
IRQ11 sig <= "17;
IRQ_next_ready <= "0";
IRQ_state <= '"1100";
end if;
else
IRQ11_sig <= "17;
IRQ_next, ready < "0
IRQ_signal_state <= "00";
IRQ_state <= '"1100";
end if;

when ''1100" => 1RQ12
if IRQ_in = "1 then

if IRQ_signal_state = 00" then
IRQ_signal_state <= "'01";
IRQ12_sig <= "07;

elsif IRQ_signal_state = 01" then
IRQ_signal_state <= ""10";
IRQ12_sig <= "0";
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else
IRQ3_sig <= "17;
IRQ_next _ready <= "07;
IRQ_signal_state <= "00";
IRQ_state <= ""0100";

end if;

when "'0100"" => 1RQ4
if IRQ_in = "1" then
if IRQ_signal_state = 00" then
IRQ_signal_state <= "01";
IRQ4_sig <= "0";
elsif IRQ_signal_state = 01" then
IRQ_signal_state <= ""10";
IRQ4_sig <= "0";
elsif IRQ_signal_state = ""10" then
IRQ_signal_state <= ""11";
IRQ4_sig <= "0";
elsif IRQ_signal_state = 11" then
IRQ_signal_state <= "'00";
IRQ4_sig <= "17;
IRQ_next_ready <= "0%;
IRQ_state <= ""0101";
end if;
else
IRQ4_sig <= "17;
IRQ_next _ready <= "0%;
IRQ_signal_state <= "00";
IRQ_state <= "0101";
end if;
when "'0101" => 1RQ5

if IRQ_in = "1 then
if IRQ_signal_state = 00" then
IRQ_signal_state <= "01";
IRQ5_sig <= "0";
elsif IRQ signal_state = "01" then
IRQ_signal_state <= ""10";
IRQ5_sig <= "0";
elsif IRQ_signal_state = 10" then
IRQ_signal_state <= "11";
IRQ5_sig <= "0";
elsif IRQ_signal_state = 11" then
IRQ_signal_state <= "'00";
IRQ5_sig <= "17;
IRQ_next_ready <= "0%;
IRQ_state <= ""0110";
end if;
else
IRQ5_sig <= "1°;
IRQ_next_ready <= "0%;
IRQ_signal_state <= "00";
IRQ_state <= "'0110";
end if;
when *'0110" => 1RQ6:

if IRQ_in = "1 then
if IRQ_signal_state = 00" then
IRQ_signal_state <= "01";
IRQ6_sig <= "0";
elsif IRQ _signal_state = "01" then
IRQ_signal_state <= "10";
IRQ6_sig <= "0";
elsif IRQ signal_state = 10" then
IRQ_signal_state <= "11";
IRQ6_sig <= "0";
elsif IRQ_signal_state = 11" then
IRQ_signal_state <= "00";
IRQ6_sig <= "17;
IRQ_next_ready <= "0";
IRQ_state <= "0111";
end if;
else
IRQ6_sig <= "17;
IRQ_next_ready <= "0%;
IRQ_signal_state <= "00";
IRQ_state <= "0111";
end if;

elsif IRQ_signal_state = 10" then
IRQ_signal_state <= ""11";
IRQ12_sig <= "0%;
elsif IRQ_signal_state = 11" then
IRQ_signal_state <= "00";
IRQ12_sig <= "17;
IRQ_next_ready <= "0";
IRQ_state <= ""1101";
end if;
else
IRQ12 sig <= "17;
IRQ_next_ready <= "07;
IRQ_signal_state <= "00";
IRQ_state <= "1101"";
end if;
when ""1101" => 1RQ13

if IRQ_in = "1" then
if IRQ_signal_state = 00" then
IRQ_signal_state <= "01";
IRQ13_sig <= "07;
elsif IRQ signal_state = 01" then
IRQ_signal_state <= "10";
IRQ13_sig <= "07;
elsif IRQ_signal_state = 10" then
IRQ_signal_state <= ""11";
IRQ13_sig <= "0%;
elsif IRQ_signal_state = 11" then
IRQ_signal_state <= "'00";
IRQ13_sig <= "17;
IRQ_next_ready <= "0~;
IRQ_state <= ""1110";
end if;
else
IRQ13_sig <= "17;
IRQ_next_ready <= "0%;
IRQ_signal_state <= "00';
IRQ state <= "1110";
end if;

when ""1110" => 1RQ14
if IRQ_in = "1 then
if IRQ_signal_state = 00" then
IRQ_signal_state <= "01";
IRQ14 sig <= "0";
elsif IRQ _signal_state = "01" then
IRQ_signal_state <= "10";
IRQ14 sig <= "0";
elsif IRQ_signal_state = 10" then
IRQ_signal_state <= "11";
IRQ14 _sig <= "0%;
elsif IRQ_signal_state = 11" then
IRQ_signal_state <= "'00";
IRQ14 sig <= "17;
IRQ_next_ready <= "0%;
IRQ_state <= "'0011";
end if;
else
IRQ14_sig <= "17;
IRQ_next_ready <= "0%;
IRQ_signal_state <= "'00";
IRQ_state <= "0011";
end if;
when others =>
IRQ_state <= "0011";
IRQ_next_ready <= "0";
end case;
elsif IRQ poll_ok = "0" then
IRQ_next _ready <= "17;
end if;
end if;
end process;
end Behavioral;
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B.7 IRQ _timer.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

Master Node

IRQ_timer - Behavioral

Distributed ISA

Xilinx - Spartan 3

—-— Tool versions: Xilinx - ISE WebPACK 7.1i

-- Description: Generates the timeout signal indicating that
-- no data has been transferred on the bus in the specified

-- interval

-- Revision: 14

-- Revision date: 20 June 2005

—-- Design Name:
-- Module Name:
-- Project Name:
-- Target Device:

library IEEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE._STD LOGIC_ARITH.ALL;
use IEEE_STD LOGIC_UNSIGNED.ALL;

entity IRQ_timer is
Port ( clk : in std_logic;
IRQ_timer_reset : in std_logic;
IRQ_timeout : out std logic);
end IRQ_timer;

architecture Behavioral of IRQ timer is
signal counter : std logic_vector(15 downto 0);

begin

—--To generate timout at 15 us
--Vid MHZ clk -———- count to

--10 150 = X'"0096"
--25 375 = X"'0177""
--50 750 = X"02EE"
--100 1500 = X"05DC™
--200 3000 = X"0BB8"

timer:process(clk, IRQ_timer_reset)
begin
if IRQ_timer_reset = "1" then
IRQ_timeout <= "07;
counter <= (others => "0%);
elsif clk"event and clk ="1" then
if counter <= X"0022" then --clk = 50 MHz
--702 ns IRQ _poll

=> X"0022" =

counter <= counter +1;
else
IRQ_timeout <= "1%; --indicates that no data has been
—--transferren on the bus in the specified interval and next
——interrupt could then be polled.
end if;
end if;
end process;
end Behavioral;

B.8 ISA bus 15us_timer.vhd

—--— Company: Hectronic AB
—-- Engineer: Johan Johansson

Master Node

ISA bus_15us_timer - Behavioral

Distributed ISA

Xilinx - Spartan 3

—-- Tool versions: Xilinx - ISE WebPACK 7.1i

—-- Description: Generates a timeout signal after about 13 us
—- of ISA bus holding. The ISA bus is held by the use of the

—-- CHRDY signal. The timeout will relese the bus.

—-- Design Name:
-- Module Name:
—-- Project Name:
-- Target Device:

-- Revision: 14
-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC UNSIGNED.ALL;

entity ISA bus_15us_timer is
Port ( clk, reset : in std_logic;
ISA_15us_timeout : out std logic);
end ISA bus 15us_timer;

architecture Behavioral of ISA bus_15us_timer is
signal counter : std_logic_vector(15 downto 0);

begin

--To generate timout at 15 us
--Vid MHZ clk ————- count to

--10 150 = X'0096"
--25 375 = X"0177""
--50 750 = X"02EE"
--100 1500 = X'05DC"*
--200 3000 = X"0BB8"

timer:process(clk, reset)
begin
if reset = "1" then
ISA_15us_timeout <= "07;
counter <= (others => "0%);
elsif clk"event and clk ="1" then
if counter <= X"02BC" then --clk = 50 MHz => X"'02BC"
counter <= counter +1;
else
ISA_15us_timeout <= "17;
end if;
end if;
end process;

end Behavioral;
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B.9 ISA Input_flipflop.vhd

Company: Hectronic AB
Engineer: Johan Johansson

Master Node

1SA_Input_flipflop - Behavioral
Distributed ISA

Xilinx - Spartan 3

Tool versions: Xilinx - ISE WebPACK 7.1i
Description: Samples the asynchronous ISA bus and
generatates synchronous output signals to the
master_node_state_machine.

Design Name:
Modulle Name:
Project Name:
Target Device:

14
20 June 2005

Revision:
Revision date:

library IEEE;

use IEEE.STD LOGIC_1164_ALL;
use IEEE_STD LOGIC_ARITH.ALL;
use IEEE_STD LOGIC_UNSIGNED.ALL;

entity ISA Input_flipflop is

Port ( clk : in std_logic;
BCLK : in std_logic;
IOWC : in std _logic;
IORC : in std_logic;
AEN : in std_logic;
SBHE : in std_logic;
BALE : in std_logic;
SA : in std_logic vector(9 downto 0);

BCLK out : out std logic;
I0WC_out : out std logic;
I0RC_out : out std_logic;
AEN_out : out std_logic;
SBHE_out : out std logic;
BALE out : out std logic;
SA out : out std_logic_vector(9 downto 0));

end I1SA_Input_flipflop;

architecture Behavioral of ISA_Input_flipflop is

begin
Dvippa: process(clk) -- Inferes a D-flipflop to sample the
—- ISA bus with.
begin
if rising_edge(clk) then
BCLK_out <= BCLK;
I0WC_out <= 10WC;
I0RC_out <= I0RC;

AEN_out <= AEN;
SBHE_out <= SBHE;
SA out <= SA;
BALE out <= BALE;
end if;
end process;
end Behavioral;

B.10 ISA slave.vhd

Company: Hectronic AB
Engineer: Johan Johansson

Master Node

ISA slave - Behavioral
Distributed ISA

Xilinx - Spartan 3
Xilinx - ISE WebPACK 7.1i

Design Name:
Module Name:
Project Name:
Target Device:
Tool versions:

if BCLK="0" then
1016_sig <= "0";
CHRDY_sig <= "07;
reset_chrdy_timer <= "0%;
data_output <= (others => "17);
SD <= (others => "Z%);
dev_read <= "0%;
dev_write <= "0";
reg_read <= "0";
reg_write <= "07;
state <= write_delay2 SW2;

- Description: This state-machine acts as a slave device on
the ISA bus
- connected to the host computer.
-- Revision: 14

-- Revision date:

20 June 2005

library IEEE;

use IEEE.STD_LOG
use IEEE.STD_LOG
use IEEE.STD_LOG

IC_1164.ALL;
IC_ARITH.ALL;
IC_UNSIGNED.ALL ;

entity ISA slave is
Port ( SA : in std_logic_vector(9 downto 0);
BCLK : in std_logic;
AEN : in std_logic; --Check that AEN = "0" => no DMA
SBHE : in std_logic;
IORC : in std_logic;
I0WC : in std_logic;
1016 : out std_logic;
CHRDY : out std_logic;
SD : inout std_logic_vector(15 downto 0) := (others
= 7);
BALE : in std_logic;
clk : in std_logic;
reset : in std logic;
swO : in std logic;
--if sw0 = "0" => activates internal register (on the master)
--at 2E8 tom 2EF
——if sw0 = "1" the addressed data in the interval is sent to to

--the slaves.

address_output :
data_output :
SBHE_out :
dev_data_in :

out std_logic_vector(9 downto 0);
out std_logic_vector(15 downto 0);
out std logic;

in std_logic_vector(15 downto 0);

else

1016_sig <= "0";
CHRDY_sig <= "0";
reset_chrdy_timer

<= "07;

data_output <= (others => "1%);

SD <= (others => *
dev_read <= "0%;
dev_write <= "0";
reg_read <= "0";
reg write <= "0";

end if;
when write_delay2_SW2 =>
it BCLK="1" then

downto 0) =

--3E8,3EA

1016_sig <= "0";
CHRDY_sig <= "0;
reset_chrdy_timer
data_output <= SD;
SD <= (others => *
dev_read <= "0%;
reg_read <= "0";

if (SA(9 downto 3) =
*1111101001") then
to 3EF is switchable

VA H

--Bus data is stable (after waiting
--some BCLKcycles)

<= "0";

Z7);
""1111101" and sw0="0") or (SA(9

registers. Switched by slave bit

—-—in 3E9. 3E9 is always connected to the Master

reg write <= "1%;
dev_write <= "07;

else
reg_write <= "0%;
dev_write <= "17;

end if;

state <= write_waitfortransmission_SW3;

else
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reg_data_in :

dev_transmission_ok : in std_logic;
—--the device module has data ready on bus

reg_transmission_ok : in std_logic;
--the register module has data ready on bus

dev_read : out std_logic;

dev_write : out std logic;

reg_read : out std_logic;

reg write : out std_logic;

reset_chrdy_timer : out std_logic);
end ISA slave;

in std_logic_vector(15 downto 0);
—--indicates if

—--indicates if

architecture Behavioral of ISA slave is

type state_type is (Groundstate SO, Address_latch_SRW7,
Command_SRW8, write _delayl SW1, write_delay2 SW2,
write_waitfortransmission_SW3, Read waitfortransmission_SR4,
Read_CHRDYdelayl SR5, Read_CHRDYdelay2_SR5,
Read_CHRDYdelay3 SR5, Endcycle_SRW9);

signal state : state_type:= Endcycle_SRW9;

signal CHRDY_sig, 1016_sig : std_logic;

begin

CHRDY <= "0" when CHRDY_sig = "0" else "Z%;
1016 <= "0" when 1016_sig = "0~ else "Z";

p0: process(CLK, reset)
begin
if reset = "1" then
state <= Groundstate_SO; --Wait for next bus cycle so that
--groundstate_SO triggers in
--beginning of command
1016_sig <= "1";
dev_read <= "0";
dev_write <= "07;
reg read <= "0";
reg_write <= "0";
CHRDY_sig <= "1°;
reset_chrdy_timer <= "17;
data_output <= (others => "1%);
address_output <= (others => "1%);
SBHE out <= "17;
SD <= (others => "Z%);
elsif CLK"event and CLK = "1" then -- Sampling clock faster
—- than 16 MHz if BCLK is
-- 8 MHZ
case state is --1SA-State machine
when Groundstate SO =>
if BALE = "1" then -- triggers on BALE and starts the
—-- bus sampling cycle
state <= Address_latch SRW7;
1016_sig <= "17;
dev_read <= "07;
dev_write <= "07;
reg_read <= "0";
reg_write <= "0%;
CHRDY_sig <= "17;
reset_chrdy_timer <= "1%;
data output <= (others => "17);
address_output <= (others => "1%);
SBHE_out <= "17;
SD <= (others => "Z%);
end if;
when Address_latch SRW7 => --Checks if address is in range
if BALE = "0" then
if dev_transmission_ok="0" and
reg_transmission _ok="0" and AEN="0" and
(SA(9 downto 0) = ""0010000000" or

SA(9 downto 1) = '100111100" or

SA(9 downto 3) = ""1011101" or --2E8 tom 2EF --744

SA(9 downto 3) = "'1111101" --3E8 tom 3EF --1000
)dthen --hex: 278, 279, 80 == ok and AEN and

——transmissionsignals is reset
state <= Command_SRW8;
1016_sig <= "0";
dev_read <= "0";
dev_write <= "07;
reg read <= "07;
reg write <= "0";
CHRDY_sig <= "17;
reset_chrdy_timer <= "17;
data_output <= (others => "1%);
address_output <= SA;
SBHE_out <= SBHE;
SD <= (others => "Z%);
else
state <= Groundstate_SO;
1016_sig <= "1°;

1016_sig <= "0";
CHRDY_sig <= "07;
reset_chrdy_timer <= "0%;
data_output <= (others => "1%);
SD <= (others => "Z%);
dev_read <= "0";
dev_write <= "07;
reg_read <= "07;
reg_write <= "0";

end if;

when write_waitfortransmission SW3 =>
if dev_transmission_ok="1" or reg_transmission_ok="1"

then
1016_sig <= "0";
CHRDY_sig <= "17;
reset_chrdy_timer <= "1%;
data_output <= (others => "1%);
SD <= (others => "Z%);
dev_read <= "0%;
--dev_write <= "0%;
reg _read <= "0";
—--reg_write <= "0";
state <= Endcycle_SRW9;
else
1016_sig <= "07;
CHRDY_sig <= "07;
reset_chrdy_timer <= "07;
SD <= (others => "Z%);
dev_read <= "0%;
reg_read <= "07;
end if;
when Read_waitfortransmission SR4 =>
-- wait for reg/dev transmission to complete
if dev_transmission_ok = "1" then --=> will put data
—--on ISA bus and wait for next buscycle
1016_sig <= "0";
CHRDY_sig <= "0";
reset_chrdy_timer <= "07;
data_output <= (others => "1%);
SD <= dev_data_in;
--dev_read <= "0";
dev_write <= "07;
—--reg_read <= "0%;
reg write <= "0°;
state <= Read_CHRDYdelayl_SR5;
elsif reg_transmission ok = "1" then
--data on ISA bus and wait for next buscycle
1016_sig <= "0";
CHRDY_sig <= "0%;
reset_chrdy_timer <= "0%;
data_output <= (others => "1%);
SD <= reg_data_in;
—--dev_read <= "0%;
dev_write <= "0%;
—-reg_read <=
reg_write <= "07;
state <= Read CHRDYdelayl_SR5;
else
1016_sig <= "07;
CHRDY_sig <= "07;
reset_chrdy_timer <= "07;
data_output <= (others => "1%);
SD <= (others => "Z%);
dev_write <= "07;
reg_write <= "07;
end if;
when Read CHRDYdelayl SR5 => -- data wait 1 - wait state
-- 1-3 holds data on the ISA bus a while before releasing the
-- bus (CHRDY="1%)
if BCLK="1" then
1016_sig <= "0";
CHRDY_sig <= "0";
reset_chrdy timer <= "0";
data_output <= (others => "1%);
—-dev_read <= "0%;
dev_write <= "0%;
—-reg_read <= "0%;
reg write <= "0°;
state <= Read_CHRDYdelay2_SR5;
else
1016_sig <= "0";
CHRDY_sig <= "07;
reset_chrdy_timer <= "07;
data_output <= (others => "1%);
—--dev_read <= "0";
dev_write <= "0";
--reg_read <= "0";

-—=> will put
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dev_read <= "0";

dev_write <= "07;

reg read <= "0";

reg write <= "0";

CHRDY_sig <= "1";
reset_chrdy_timer <= "17;
data_output <= (others => "1%);
address_output <= (others => "1%);
SBHE_out <= SBHE;

SD <= (others => "Z%);

end if;

else
1016_sig <= "17;
dev_read <= "0%;

dev_write <= "0";

reg_read <= "0";

reg write <= "0°;

CHRDY_sig <= "1"°;
reset_chrdy_timer <= "17;
data_output <= (others => "1%);
address_output <= (others => "1%);
SBHE_out <= "1%;

SD <= (others => "Z%);

end if;

when Command_SRW8

=> —-waits for an ISA bus command

if 10MC="0" then

state <= write_delayl SW1;
1016_sig <= "0";

dev_read <= "0";
dev_write <= "0";

reg_read <= "0";

reg_write <= "07;
CHRDY_sig <= "0";
reset_chrdy_timer <= "07;
data_output <= (others => "17);
address_output <= SA;
SBHE_out <= SBHE;

SD <= (others => "Z%);

elsif I0RC="0" then

--3E8,3EA
—--in 3E9.

elsif BALE =

state <= Read_waitfortransmission_SR4;
1016_sig <= "0";
dev_write <= "0";
reg write <= "0";
CHRDY_sig <= "0~;
reset_chrdy_timer <= "07;
data_output <= (others => "1%);
address_output <= SA;
SBHE_out <= SBHE;
SD <= (others => "Z%);
if (SAQQ downto 3) = 1111101 and sw0="0") or
(SA(9 downto 0) = '1111101001'") then
to 3EF is switchable registers. Switched by slave bit
3E9 is always connected to the Master
reg read <= "17;
dev_read <= "0";
else
reg_read
dev_read
end if;

<=
<=

0";
17

"1" then

state <= Address_latch SRW7;
1016_sig <= "17;

dev_read <= "0%;

dev_write <= "0";

reg_read <= "0";

reg_write <= "0%;

CHRDY_sig <= "17;
reset_chrdy_timer <= "0%;
data_output <= (others => "1%);
address_output <= SA;
SBHE_out <= SBHE;

SD <= (others => "Z%);

else

1016_sig <= "0";

dev_read <= "0%;
dev_write <= "0";
reg_read <= "0";

reg write <= "0%;
CHRDY_sig <= "1"%;
reset_chrdy_timer <= "17;
data_output <= (others => "17);
address_output <= SA;
SBHE_out <= SBHE;

SD <= (others => "Z%);

end if;

when write_delayl SW1 =>

--Waits till written data has

—-- stabilized on the bus before reading

reg write <= "0°;
end if;

when Read CHRDYdelay2 SR5 =>

if BCLK="0" then
1016_sig <= "07;
CHRDY_sig <= "07;
reset_chrdy_timer

—-- data wait 2

<= "0";

data_output <= (others => "1%);
-0 -

—--dev_read <=
dev_write <=
--reg_read <=

reg_write <= "0";
state <= Read_CHRDYdelay3 SR5;

else
1016_sig <= "0";
CHRDY_sig <= "0";
reset_chrdy_timer

<= "0";

data_output <= (others => "17);

--dev_read <= "0";

dev_write <= "0";

—--reg_read <= "0"

reg_write <= "07;
end if;

when Read CHRDYdelay3 SR5 =>

if BCLK="1" then
1016_sig <= "0";
CHRDY_sig <= "1";
reset_chrdy_timer

-- data wait 3

<= "17;

data_output <= (others => "1%);

—--dev_read <= "0";

dev_write <=

--reg_read <= "0";

reg_write <= "0%;

state <= Endcycle_SRW9;

else
1016_sig <= "0";
CHRDY_sig <= "0";
reset_chrdy_timer
data_output <= (0
--dev_read <= "0"
dev_write <=
--reg_read <=
reg_write <= "0";

end if;

0";

when Endcycle_SRW9 =>

0" -

<= "07;
thers => "1%);

--End of transmission. Wait for
--next bus cycle and command reset

if IORC="1" and IOWC="1" then

1016_sig <= "17;
dev_read <= "0%;
dev_write <= "0";
reg read <= "0";
reg write <= "0°;
CHRDY_sig <= "17%;

reset_chrdy timer <= "1%;

data_output <= (0

address_output <= (others

SD <= (others =>

thers => "1%);
=> .l') ;
"Z°);

state <= Groundstate_SO;

else
1016_sig <= "0";
CHRDY_sig <= "17;

reset_chrdy_timer <= "1%;

data_output <= (others =>
address_output <= (others

end if;
when others =>

1)
= "1;

state <= Endcycle_SRW9;--Takes care of undefined states

1016 _sig <= "17;
dev_read <= "0";
dev_write <= "0";
reg_read <= "0";
reg_write <= "0%;
CHRDY_sig <= "17;

reset_chrdy_timer <= "17;

data_output <= (others =>
address_output <= (others

SBHE_out <= "17;

1)
= "1%);

SD <= (others => "Z%);

end case;
end if;
end process;
end Behavioral;
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B.11 LED display4digit.vhd

Company: Hectronic AB
Engineer: Johan Johansson

Master Node and Slave Node
LED_display4digit - Behavioral
Distributed ISA

Xilinx - Spartan 3

Xilinx - ISE WebPACK 7.1i

Design Name:
Module Name:
Project Name:
Target Device:
Tool versions:

-- Description: Displays a 16 bit value on the led display on
- the Spartan 3 development board. For debugging
- purposes only.

-- Revision: 14

Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE._STD LOGIC_ARITH.ALL;
use IEEE_STD LOGIC_UNSIGNED.ALL;

entity LED displayddigit is
Port ( Value_16bit : in std_logic_vector(15 downto 0);
clk, disp_on : in std_logic;
an : out std logic_vector(3 downto 0);
segments_atodp : out std logic_vector(7 downto 0));
end LED display4digit;

--16 bitS Value, 4 digits of 4 bits each
—-—clk fast a couple of MHz, disp_on lights the digits

architecture Behavioral of LED display4digit is

signal loadvalue : std logic:="1";

signal statevar : std_logic vector(1l downto 0):="00";

signal digvalue : std logic_vector(3 downto 0);

signal delay : std_logic vector(15 downto 0):="0000000000000000";

begin
process(clk,disp_on)
begin
if disp_on="0" then
an <= "1111";
elsif clk"event and clk="1" then
delay <= delay + 1;
if loadvalue="1" and delay = ""00000000" then
loadvalue<="0";
case statevar is
when "'00"" =>
an <= ""1110";

—- Turns all figures in the display off

—-- after the specified delay the next figure is chosen

digvalue(0) <=
digvalue(l) <=
digvalue(2) <=
digvalue(3d) <=
when ""01" =>
an <= ""1101";
digvalue(0) <=
digvalue(l) <=
digvalue(?) <=
digvalue(d) <=
when 10" =>
an <= ""1011";
digvalue(0) <=
digvalue(1l) <=
digvalue(2) <=
digvalue@) <=
when ""11" =>
an <= "0111";
digvalue(0) <=
digvalue(1) <=
digvalue(?) <=
digvalue3) <=

Value_16bit(0);
Value_16bit(1);
Value_16bit(2);
Value_16bit(3);

Value_16bit(4);
Value_16bit(5);
Value_16bit(6);
Value_16bit(7);

Value_16bit(8);
Value_16bit(9);
Value_16bit(10);
Value_16bit(11);

Value_16bit(12);
Value_16bit(13);
Value_16bit(14);
Value_16bit(15);

when others => null;

end case;
end if;

if loadvalue="0" then
loadvalue<="1";
statevar <= statevar + 1;
case digvalue is

—--activates next figure
--sets the segment bit pattern to the corresponding hex number

when "'0000™" => segments_atodp <= ''00000011"; --0 last bit is a decimal point
when "'0001" => segments_atodp <= '"10011111"; --1
when "'0010" => segments_atodp <= ''00100101"; --2
when "'0011" => segments_atodp <= ''00001101"; --3
when "'0100" => segments_atodp <= ''10011001"; --4
when "'0101" => segments_atodp <= ''01001001"; --5
when "'0110" => segments_atodp <= ''01000001"; --6
when "'0111" => segments_atodp <= ''00011111"; --7
when "'1000" => segments_atodp <= '00000001"; --8
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when "1001" => segments_atodp <= ''00001001"; --9
when ""1010" => segments_atodp <= ''00010001"; --A
when "1011" => segments_atodp <= ''11000001"; --b
when ""1100" => segments_atodp <= ''01100011"; --C
when ""1101" => segments_atodp <= ''10000101"; --d
when ""1110" => segments_atodp <= "'01100001"; --E
when ""1111" => segments_atodp <= "'01110001"; --F
when others => null;
end case;
end if;
end if;

end process;
end Behavioral;

B.12 LVDS master_transm_timer.vhd

Company: Hectronic AB
Engineer: Johan Johansson
Design Name: Master Node
Module Name:
Project Name:
Target Device:
Tool versions:

Xilinx - ISE WebPACK 7.1i

—-- Description: Generates a timeout signal when the

- addressed slave node has not generated a
- reply in the specified time interval.

-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC _1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC _UNSIGNED.ALL;

entity LVDS master_transm_timer is
Port ( clk, reset : in std_logic;
master_transmission_timout :
end LVDS_master_transm_timer;

out std_logic);

architecture Behavioral of LVDS master_transm_timer is
signal counter : std_logic_vector(15 downto 0);
begin

--To generate timout at 15 us

--Vid MHZ clk ————- count to

--10 150 = X''0096""
--25 375 = X"0177
--50 750 = X"02EE"
--100 1500 = X'05DC**
--200 3000 = X'"0BB8"

timer:process(clk, reset)
begin
if reset = "1" then
master_transmission_timout <= "0";
counter <= (others => "0%);

elsif clkevent and clk ="1" then --X"0B4" && clk
--=> 3,600 us
if counter <= X"0B4" then --X"0019" && clk
--=> 0,540 us
counter <= counter + 1; --X""0032" && clk
-—=>1 us
else
master_transmission_timout <= "1%;
end if;
end if;

end process;

end Behavioral;

50 MHz

50 MHz

50 MHz

B.13 Error_code_checker.vhd

Company: Hectronic AB
Engineer: Johan Johansson

ERR 2(3) <=
ERR 2(4) <=
ERR 2(5) <=
ERR 2(6) <=

a(11) xor
a(12) xor
a(13) xor
a(14) xor

a@n);
a(28);
a(29);
a(30);

Design Name:
Module Name:

Master Node and Slave Node
Error_code_checker - Behavioral

Project Name:
Target Device:
Tool versions:
-- Description:

block with data

Xilinx - ISE WebPACK 7.1i
Compares error checking code in the data

transmitted by Ivds between modules.
14
20 June 2005

-- Revision:
-- Revision date:

library IEEE;

use IEEE.STD LOGIC_1164_ALL;
use IEEE.STD_LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Error_code_checker is
Port ( clk, reset : in std_logic;
LVDS_link_in_ready : in std_logic;
a : in std_logic vector(39 downto 0);
—--received from lvds link
Data_out : out std_logic vector(15 downto 0);
Transmission_ok : out std_logic; --Indicates that
—--reception is Finished and NO errors detected

--Data block

ERR_2(7) <=
ERR_code(0) <=
ERR_code(1) <=
ERR_code(2) <=
ERR_code(3) <=
ERR_code(4) <=
ERR_code(5) <=
ERR_code(6) <=
ERR_code(7) <=

a(15) xor

a(BD);
ERR_1(0) xor
ERR_1(1) xor
ERR_1(2) xor
ERR_1(3) xor
ERR_1(4) xor
ERR_1(5) xor
ERR_1(6) xor
ERR_1(7) xor

ERR 2(0);
ERR 2(1);
ERR_2(2);
ERR_2(3);
ERR_2(4);
ERR_2(5);
ERR_2(6);
ERR_2(7);

process(clk, reset)
begin

if reset="1" then
address <= (others => "1%);

Data out <= (others
Infobits <= (others

Readl write0
SBHE <= "0";

= "17);
= "0%);
<= "0";

Transmission ok <= "0;

Transmission_bad <=
Check_error_code <=

done <= "07;

0";
0":

elsif rising_edge(clk) then

if LVDS_link_in_ready = "17

Check_error_code <= "17;

end if;

and Check_error_code = "0" then
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Transmission _bad : out std logic; —--Indicates that
—--reception is finished and errors detected

Readl write0O : out std logic;

SBHE : out std logic;
Infobits : out std logic_vector(3 downto 0);
address : out std logic_vector(9 downto 0));

end Error_code_checker;

architecture Behavioral of Error_code_checker is
signal Check _error_code, done : std_logic;
signal ERR_1 : std_logic_vector(7 downto 0);
signal ERR_2 : std_logic_vector(7 downto 0);
signal ERR _code : std_logic_vector(7 downto 0);
begin

--Generates the error checking code from data

ERR_1(0) <= a(0) xor a(16);
ERR_1(1) <= a(1l) xor a(l7);
ERR_1(2) <= a(2) xor a(18);
ERR_1(3) <= a(3) xor a(19);
ERR_1(4) <= a(4) xor a(20);
ERR_1(5) <= a(5) xor a(2l);
ERR_1(6) <= a(6) xor a(22);
ERR_1(7) <= a(7) xor a(23);

ERR _2(0) <= a(8) xor a(24);
ERR 2(1) <= a(9) xor a(25);
ERR 2(2) <= a(10) xor a(26);

iT Check_error_code = "1" and done = "0" then
—--Because the lIvds receiver has another clk than the internal
—-logic this wait step is introduced so that the data is be
—--stablilized.
if ERR_code = a(39 downto 32) and a(26) = "0" then
Data_out <= a(15 downto 0); --a(26) = resend_request
address <= a(25 downto 16); --a(28) = poll request
Transmission_ok <= "17; —--Error checking ok
Transmission_bad <= "0";
Readl write0 <= a(3l);
SBHE <= a(30);
Infobits <= a(29 downto 26);
done <= "1%;
else
Data_out <= (others => "1%);
address <= (others => "1%);
Transmission ok <= "0%;
Transmission_bad <= "17;
Readl write0 <= "0";
SBHE <= "0";
Infobits <= (others => "0%);
done <= "1%;
end if;
end if;
end if;
end process;

—-- Error check not ok

end Behavioral;

B.14 Data reorder_lvds_in.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

—-- Design Name: Master Node and Slave Node

—- Module Name:
- Project Name:

- Target Device:
- Tool versions:

data_reorder_lvds_in - Behavioral
Distributed ISA

Xilinx - Spartan 3

Xilinx - ISE WebPACK 7.1i

- Description: Reorders data between buses. Adds data from
- shift registers to an 40 bit data bus.
-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC _1164.ALL;
use IEEE.STD_LOGIC ARITH.ALL;
use IEEE.STD_LOGIC _UNSIGNED.ALL;

entity data reorder_lvds_in is
Port ( data_even : in std_logic_vector(20 downto 0);

data_odd : in std_logic_vector(20 downto 0);
dataut : out std_logic_vector(39 downto 0));

end data_reorder_Ivds_in;

architecture Behavioral of data reorder_lvds_in is --Reorder

the data wires from the shift registers

--to create the data block "dataut®

begin

-- One stop bit is unconnected == 0; <= data_odd(0);

dataut(0) <= data_even(0);

dataut(l) <= data _odd(1);

dataut(2) <= data even(l);

dataut(3) <= data_odd(2);

dataut(4) <= data even(2);
dataut(5) <= data_odd(3);
dataut(6) <= data_even(3);
dataut(7) data_odd(4);
dataut(8) data_even(4);
dataut(9) data_odd(5);
dataut(10) data_even(5);
dataut(11l) data_odd(6);
dataut(12) data_even(6);
dataut(13) data_odd(7);
dataut(14) <= data even(7);
dataut(15) <= data_odd(8);
dataut(16) <= data even(8);
dataut(17) <= data_odd(9);
dataut(18) <= data even(9);
dataut(19) <= data odd(10);
dataut(20) <= data_even(10);
dataut(21l) <= data odd(1l);
dataut(22) <= data even(1l);
dataut(23) <= data_odd(12);
dataut(24) <= data even(12);
dataut(25) data_odd(13);
dataut(26) data_even(13);
dataut(27) data_odd(14);
dataut(28) data_even(14);
dataut(29) data_odd(15);
dataut(30) data_even(15);
dataut(31) data_odd(16);
dataut(32) data_even(16);
dataut(33) <= data_odd(17);
dataut(34) <= data even(17);
dataut(35) <= data_odd(18);
dataut(36) <= data_even(18);
dataut(37) <= data_odd(19);
dataut(38) <= data_even(19);
dataut(39) <= data_odd(20);

ANNAANANANANNNANANNAA
AAAAADTT T TTTTTTUTTTTTAANAANANR
o

N

-- One startbit is unconnected == 1; <= data_even(20);

end Behavioral;
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B.15 Shift_sipo.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

Master Node and Slave Node

shift_sipo - Behavioral

Distributed ISA

Xilinx - Spartan 3

—-— Tool versions: Xilinx - ISE WebPACK 7.1i

-- Description: Shift register - serial in, parallel out
-- Revision: 14

-- Revision date: 20 June 2005

—-- Design Name:
-- Module Name:
-- Project Name:
-- Target Device:

library IEEE;

use IEEE_STD LOGIC_1164_ALL;
use IEEE_STD LOGIC_ARITH.ALL;
use IEEE_STD LOGIC_UNSIGNED.ALL;

entity shift _sipo is
generic (reg_width: integer:= 21); --reg_width = number of
—--bits on the output
Port ( clk, reset, shift _en, d_in : in std_logic;
shift_out : out std_logic_vector(reg_width-1 downto
0));

end shift sipo;

architecture Behavioral of shift _sipo is --The shift register
signal shift_reg:std _logic_vector(reg width-1 downto 0);

begin
pO:process(clk, reset)
begin
if reset="1" then
shift_reg <= (others => "0%);
elsif clk"event and clk="1" then
if shift_en="1" then
shift_reg(reg_width-1 downto 1) <=
shift_reg(reg_width-2 downto 0);
shift_reg(0) <= d_in;
end if;
end if;
end process;

shift_out <= shift_reg;

end Behavioral;

B.16 Shift_sipo_fullout.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

Master Node

shift_sipo_fullout - Behavioral
Distributed ISA

Xilinx - Spartan 3

Xilinx - ISE WebPACK 7.1i

—-- Design Name:
-- Module Name:
-- Project Name:
-- Target Device:
—-- Tool versions:

—-- Description: Shift register - serial in, parallel out.
- Indicates when a high bit has reached the
- highest position to signal that 40 bits from
- the Ivds line has been received.
Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE.STD_LOGIC ARITH.ALL;
use IEEE.STD_LOGIC _UNSIGNED.ALL;

entity shift_sipo_fullout is
generic (reg_width: integer:= 21);
-- reg_width = number of bits on the output
Port ( clk, reset, shift_en, d_in : in std_logic;
full_out : out std _logic;
shift_out : out std_logic_vector(reg_width-1 downto
0);
end shift_sipo_fullout;

architecture Behavioral of shift_sipo_fullout is
-- The shift register has the highest bit as an output the
—-- startbit (="1") will then in the highest position indicate
—-- that the register is full.
signal shift_reg:std_logic_vector(reg_width-1 downto 0);
begin
pO:process(clk, reset)
begin
if reset="1" then
shift_reg <= (others => "0%);
elsif clk"event and clk="1" then
if shift_en="1" and shift_reg(shift_reg~high)="0" then
shift_reg(reg_width-1 downto 1) <=
shift_reg(reg_width-2 downto 0);
shift_reg(0) <= d_in;
end if;
end if;
end process;
full_out <= shift_reg(shift _reg*high); -- If the startbit
--has reached this position the register is full

shift_out <= shift_reg;

end Behavioral;
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B.17 Master_node_state_machine.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

—-- Design Name: Master Node

—-- Module Name: Master_node_state machine - Behavioral

-- Project Name: Distributed 1SA

—-- Target Device: Xilinx - Spartan 3

—-— Tool versions: Xilinx - ISE WebPACK 7.1i

-- Description: This is the main state machine that handles the data flow
- between devices.

-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE_STD LOGIC_1164_ALL;

use IEEE.STD LOGIC_ARITH.ALL;
use IEEE_STD LOGIC_UNSIGNED.ALL;

entity Master_node_state machine is
Port ( clk : in std_logic;

reset : in std logic;
master_transmission_timeout : in std_logic;
IRQ_timeout : in std logic;
Ivds_out ready : in std_logic;
irg next_ready : in std_logic;
Ivds_transmission ok : in std_logic;
Ivds_transmission bad : in std_logic;
IRQ_count : in std_logic_vector(3 downto 0); -- holds the number of the interrupt to be polled
read_data : in std_logic;
write _data : in std_logic;
SBHE_in : in std_logic;
Data_from ISA in : in std logic_vector(15 downto 0);
Data_from_lvds_in : in std_logic vector(15 downto 0);
Address_in : in std_logic_vector(9 downto 0);

transmission_timer_reset : out std _logic;
IRQ_timer_reset : out std _logic;

transmission_ok : out std_logic; —-- indicates to the isa bus that data transferred cycle is finished
IRQ_poll_ok : out std_logic; -- indicates that the irqg polling transmission is ok
IRQ_line_status : out std_logic; —-- indicates if the polled irq line has been interrupted
LVDS_receive_reset : out std_logic; -- reset the input registers in the lvds input module
LVDS_transmit_enable : out std logic; -- enables the transmitter latch in the lvds io pad

LVDS_data_send : out std_logic; -- signals to lvds module to send data

readl_writeO_out : out std logic;

SBHE_out : out std_logic;

Data out : out std logic_vector(15 downto 0); -- data to lvds to be sent to slave nodes

Data_to ISA : out std_logic_vector(15 downto 0);

Address_out : out std_logic_vector(9 downto 0);

info_bits out : out std _logic_vector(3 downto 0);

no_timout ,timeout 2nd ,timeout_1st : out std logic); -- indicators for debugging purpose to indicate
—-— if transmission times out

end Master_node_state machine;

architecture Behavioral of Master_node_state machine is

--declares the different states in the state machine

type state_type is (Ground_state SO, State wait for_command S1, State IRQ LVDS ack SQ2, State_ IRQ enable_receptiption SQ3,
State_IRQ_end_SQ4, State_IRQ_command_reset _SQ5, State LVDS ack S2, State_enable receptiption_S3, State resend_or_end _S4);
signal State : state_type;

signal resend_count : std_logic; -- keeps track of if the data has been resent and should therefore not be resent again if
- errors.

begin

Mealy_syncout:process(clk,reset) -- Mealy Statemachine with synchronous outputs

begin

if reset="1" then
State <= Ground_state_SO;
IRQ_poll_ok <= "0";
IRQ_timer_reset <= "1%;
transmission_ok <= "0%;
LVDS_receive_reset <= "17;
LVDS_transmit_enable <= "07;
transmission_timer_reset <= "17;
resend_count <= "0%;
LVDS_data_send <= "0~;
IRQ_line_status <= "0";
Data_to_ISA <= X"FFFF";
elsif rising_edge(clk) then
case State is
when Ground_state_SO=> —- Waits for commands from the ISA module to reset
if read_data ="0" and write_data ="0" then
State <= State wait _for_command_S1;
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IRQ_poll_ok <= "07;
transmission ok <= "0%;
LVDS_receive_reset <= "17;
LVDS_transmit_enable <= "07;
transmission_timer_reset <= "17;
IRQ_timer_reset <= "07;
resend_count <= "0%;
LVDS_data_send <= "0~;

else
IRQ_poll_ok <= "0";
IRQ_timer_reset <= "17;
transmission ok <= "1%;
transmission_timer_reset <= "17;

end if;
when State wait_for_command_S1=> -- Waits for command from the ISA module
if (read data ="1" or write_data ="1") and lvds_out_ready="1" then -- reads or write ISA bus data

State <= State L\DS ack S2;
LVDS_transmit_enable <= "1°;
IRQ_timer_reset <= "1";
readl_writeO_out <= read_data;
SBHE_out <= SBHE_in;
Data_out <= Data from_ ISA in;
Address_out <= Address_in;
info_bits_out <= "0000";

elsif IRQ_timeout = "1" and Ivds_out_ready="1" and irq next ready = "1 then -- starts next interrupt poll
State <= State IRQ_LVDS_ack SQ2;
LVDS_transmit_enable <= "17;
IRQ_timer_reset <= "17;
readl write0O_out <= "0%;
SBHE_out <= "07;
Data_out <= X000 & IRQ count;
Address_out <= (others => "0");

info_bits_out <= "0100"; ——interrupt poll info bit
end if;
when State_IRQ LVDS_ack SQ2 => IRQ STATES

if Ivds_out_ready = "0" then -- waits for the lvds module to start the data send transfer
State <= State_IRQ _enable_receptiption_SQ3;
LVDS data _send <= "0%;

else
transmission_timer_reset <= "0";
LVDS data_send <= "1%;

end if;

when State_IRQ enable_receptiption SQ3=>

if Ivds_out_ready = "1" then
State <= State_ IRQ_end SQ4;
LVDS_transmit_enable <= "17;
LVDS receive_reset <= "17;

end if;
when State_ IRQ _end_SQ4=> --When data is sent stis state wait for an answer from the addressed module
if lvds_transmission_ok = "1" then —--lvds reception is ok

State <= State_IRQ_command_reset_SQ5;
IRQ_poll_ok <= "1%;
IRQ_timer_reset <= "1*;
IRQ_line_status <= Data_from_lvds_in(0);
elsif master_transmission_timeout = "1% or lvds_transmission bad = "1" then
-- Data is not received in specified time or is corrupt
State <= State wait for_command_S1;
LVDS_receive_reset <= "17;
transmission_timer_reset <= "17;
IRQ_poll_ok <= "07;
IRQ_timer_reset <= "0";
else
LVDS_transmit_enable <= "07;
LVDS_receive_reset <= "0";
end if;
when State_IRQ_command_reset _SQ5=> -- Wait for IRQ command to reset
if irg next_ready = "0" or master_transmission_timeout = "1% then
State <= State wait_for_command S1;
IRQ_timer_reset <= "07;
IRQ_poll_ok <= "0";
transmission_timer_reset <= "17;
end if; END OF IRQ STATES
when State LVDS ack S2=> -- waits for the lvds module to start the data send transfer
if Ivds_out_ready = "0" then
State <= State_enable_receptiption_S3;
LVDS_data_send <= "0%;
else
transmission_timer_reset <= "0%;
LVDS_data send <= "1%;
end if;
when State_enable_receptiption_S3=>
if Ivds_out ready = 1" then
State <= State_resend_or_end_S4;
LVDS_transmit_enable <= "17;
LVDS_receilve_reset <= "1%;
end if;
when State resend_or_end S4=> --When data is sent stis state wait for an answer from the addressed module
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if lvds_transmission_ok = "1" then
State <= Ground_state SO;
transmission ok <= "1%;
transmission_timer_reset <= "17;
no_timout <= "1°;
Data_to_ISA <= Data_from lvds_in;
elsif master_transmission_timeout =
-- Data is not received in specified time or is corrupt
if resend_count = "0" then
State <= State LVDS _ack S2;
LVDS_transmit_enable <= "17;
transmission_timer_reset <= "1%;
LVDS_receive_reset <= "17;
resend_count <= "1%;
timeout_1st <= "1%;
else
State <= Ground_state_SO;
Data to ISA <= X"FFFF";
LVDS_receive_reset <= "1%;
transmission_timer_reset <= "1°;
timeout _2nd <= "1%;
end if;
else
no_timout <= "0";
timeout _2nd <= "0%;
timeout_1st <= "07;
LVDS_transmit_enable <= "0";
LVDS_receive_reset <= "07;
end if;
when others => State <= Ground_state SO;
end case;
end if;
end process;
end Behavioral;

--lvds reception is ok

"1" or lvds_transmission bad = "1 then

—--if "resend_count® = "0 data is resent for the first time

——If transmission has failed two times the data reported is X"FFFF" indicating no answer

B.18 Baud_rate clk.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

Master Node and Slave Node
Baud_rate_clk - Behavioral
Distributed I1SA

Xilinx - Spartan 3

Xilinx - ISE WebPACK 7.1i

—-- Design Name:
-- Module Name:
-- Project Name:
-- Target Device:
—-- Tool versions:

—-- Description: Handles the baud rate timing in the RS232
- modules.
-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE.STD_LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Baud rate clk is
Port ( clk : in std_logic;

baud_count_MSByte : in std_logic_vector(7 downto 0);
baud_count_LSByte : in std_logic_vector(7 downto 0);
en_16_x baud : out std_logic);

-- the clock rate generated on en 16 x_baud should be 16 times

—-- the baud rate

end Baud_rate_clk;

architecture Behavioral of Baud rate_clk is

signal baud_count_sig : std_logic_vector(15 downto 0) :=
X'"0000"";

begin

—--BAUD_count = clk divisor = clk_rate / (baud_rate * 16) = has
—--to be within 5 % from exact value

--BAUD_count = 50 MHz / (110 baud * 16) = 28409 = X''6EF9"
—--(hex)

--BAUD_count = 50 MHz / (2400 baud * 16) = 1302 = X''0516" (hex)
--BAUD_count = 50 MHz / (9600 baud * 16) = 325.5 = X"0145"
—--(hex)

--BAUD_count = 50 MHz / (19200 baud * 16) = 162.7 = X"00A2"
—--(hex)

baud_timer: process(clk)
begin
if clk"event and clk="1" then
if baud_count_sig +1 = baud_count MSByte &
baud_count_LSByte then --count to the value set in the reg
baud_count_sig <= X''0000";
en 16 x baud <= "1%;
else

en 16 x baud <=
end if;
end if;
end process baud_timer;
end Behavioral;
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B.19 UART _registers.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

Master Node and Slave Node
UART_registers - Behavioral

Distributed ISA

Xilinx - Spartan 3

—-— Tool versions: Xilinx - ISE WebPACK 7.1i

-- Description: Maps data and data registers onto other
- registers hanled by

- the register manager.

-- Revision: 14

-- Revision date: 20 June 2005

—-- Design Name:
-- Module Name:
-- Project Name:
-- Target Device:

library IEEE;

use IEEE.STD LOGIC_1164.ALL;

use IEEE._STD LOGIC_ARITH.ALL;
use IEEE_STD LOGIC_UNSIGNED.ALL;

entity UART registers is
Port ( Transmitter_holding_reg : in std_logic_vector(7

downto 0);

Transmitter_holding_reg_write : in std_logic;

-- indicates that the register has been written to
Receiver_buffer_reg : out std logic_vector(7 downto

0);

Receiver_buffer_reg_read : in std_logic;

—-- indicates that the register has been read from
Divisor_low_byte : in std_logic_vector(7 downto 0);
Divisor_high byte : in std_logic_vector(7 downto 0);
Fifo_status reg : out std logic vector(7 downto 0);
Divisor_low : out std_logic_vector(7 downto 0);
Divisor_high : out std_logic_vector(7 downto 0);

TX data_in : out std_logic_vector(7 downto 0);
TX data_write : out std logic;

TX_buffer_data present : in std logic;
TX_buffer_half_full : in std logic;

TX buffer_full : in std_logic;

RX_data out : in std_logic_vector(7 downto 0);
RX_data read : out std_logic;

RX_buffer_data _present : in std logic;
RX_buffer_half_full : in std_logic;
RX_buffer_full : in std logic);

end UART_registers;
architecture Behavioral of UART_registers is
begin

--Maps the registers onto the corresponding data wires in the
RS232 UART

TX_data_in <= Transmitter_holding_reg;
TX_data_write <= Transmitter_holding_reg_write;
RX_data read <= Receiver_buffer_reg_read;
Receiver_buffer_reg <= RX data out;
Divisor_low <= Divisor_low_byte;

Divisor_high <= Divisor_high byte;
Fifo_status_reg(7) <= "07;

Fifo_status_reg(6) <= RX buffer_full;
Fifo_status_reg(5) <= RX_buffer_half_full;
Fifo_status_reg(4) <= RX_buffer_data present;
Fifo_status_reg(3) <= "07;

Fifo_status_reg(2) <= TX buffer_full;
Fifo_status_reg(1l) <= TX_buffer_half_full;
Fifo_status_reg(0) <= TX buffer_data present;

end Behavioral;

B.20 Unused_Z outputs.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

Master Node

unused_Z_outputs - Behavioral
Distributed 1SA

Xilinx - Spartan 3

Xilinx - ISE WebPACK 7.1i

—-- Design Name:
-- Module Name:
-- Project Name:
-- Target Device:
-- Tool versions:

-- Description: Sets the termination to the input wires to
- high impedence = ("Z%).
-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE_STD LOGIC_1164.ALL;

use IEEE_STD LOGIC_ARITH.ALL;
use IEEE_STD_LOGIC_UNSIGNED.ALL;

entity unused_Z outputs is
Port ( SA2 : out std_logic_vector(9 downto 0);
NOWS : out std_logic);
end unused_Z outputs;

architecture Behavioral of unused_Z outputs is

begin
SA2 <= (others => "Z%);
NOWS <= "Z~;

end Behavioral;

B.21 12C_controller.vhd

—-- Company: Hectronic AB
-- Engineer: Johan Johansson

—- Design Name:
—- Module Name:
-- Project Name:
-- Target Device:
-- Tool versions:

12C_controller
12C_controller - Behavioral

Xilinx - ISE WebPACK 7.1i

-- Description: This is the main I12C state machine that
- handles the data flow between 12C modules.
-- Revision: 14

-- Revision date: 19 July 2005

if SIPO_data(7 downto 1) = ""1010101" then --12C device

—--address
ackn <= "0";
if SIPO_data(0) = "0" then -- SIPO data(0)==
-- Readl/write0

state <= SIPO_internal_address_S2;
else —-read

state <= Read_data_S4;

PI1SO_load_sig <= "17;

case Int_reg address is
when X'"00" => PISO_data <= reg0_in;
when X""01" => PISO_data <= regl in;
when X'"02" => PISO_data <= reg2_in;
when X""03" => PISO_data <= reg3_in;
when X''04" => PISO data <= reg4_in;
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library IEEE;

use IEEE_STD LOGIC_1164_ALL;
use IEEE_STD LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity 12C_controller is

Port ( sclk : in std_logic;
reset : in std _logic;
ackn : out std logic;
start_of _block : in std_logic;
reset_start signal : out std_logic;
SIPO_is_full : in std_logic;
SIPO_reset : out std_logic;
SIPO_restart : out std_logic;
SIPO _data : in std_logic_vector(7 downto 0);
PISO all_is_out : in std logic;
PISO data : out std_logic_vector(7 downto 0);
PISO_load : out std_logic;
PISO_reset : out std_logic;

regO_in : in std_logic_vector(7 downto 0);
regl_in : in std_logic_vector(7 downto 0);
reg2_in : in std_logic_vector(7 downto 0);
reg3_in : in std_logic_vector(7 downto 0);
reg4_in : in std_logic_vector(7 downto 0);

reg5 _out : out std_logic_vector(7 downto 0);

reg6_out : out std_logic_vector(7 downto 0);

reg7_out : out std_logic_vector(7 downto 0);

reg8 out : out std_logic_vector(7 downto 0);

reg9 out : out std_logic_vector(7 downto 0));
end 12C_controller;

architecture Behavioral of 12C_controller is

--declares the different states in the state machine

type state_type is (Start_of package SO, SIPO_I2C _address_S1,
SIPO_internal_address_S2, Restart_or_write data S3,
Read_data_S4);

--declares internal signal wires

signal State : state_type;

signal PISO_load sig : std logic;

signal int_reg address : std_logic_vector(7 downto 0);

signal reg5 out sig, reg6_out_sig, reg7_out sig, reg8 out_sig,
reg9_out_sig : std_logic_vector(7 downto 0);

begin

reg5_out <= reg5_out_sig;
reg6_out <= reg6_out_sig;
reg7_out <= reg7_out_sig;
reg8 out <= reg8_out_sig;
reg9_out <= reg9_out_sig;
PISO_load <= PISO_load_sig;

Mealy_syncout:process(sclk,reset) -- Mealy Statemachine with
- synchronous outputs
begin
if reset="1" then
State <= Start of package SO;
reg5_out sig <= (others => "0%);
reg6_out _sig <= (others => "0%);
reg7_out _sig <= (others => "0%);
reg8 out_sig <= (others => "0%);
reg9_out _sig <= (others => "0%);
PISO_reset <= "17;
PISO_load_sig <= "0";
PISO_data <= (others => "07);
int_reg_address <= (others => "0%);
SIPO_reset <= "1%;
SIPO_restart <= "0%;
reset_start_signal <= "07;
ackn <= "1%;
elsif falling_edge(sclk) then
case State is
when Start_of_package SO=>
if start of block = "1 then
State <= SIPO_I12C_address_S1;
reset_start _signal <= "17;
SIPO_reset <= "0%;
SIPO_restart <= "1%;
else
reset_start signal <= "07;
SIPO_reset <= "1%;
SIPO_restart <= "0%;
end if;
Ackn <= "17;
PISO_reset <= "0";
P1SO_load_sig <= "07;

when X"05" => PISO_data <= reg5_out_sig;
when X""06" => PISO_data <= reg6_out_sig;
when X""07'* => PISO_data <= reg7_out_sig;
when X""08" => PISO_data <= reg8_out_sig;
when X"09" => PISO_data <= reg9 _out_sig;
when others => PISO_data <= X"FF'";

end case;
end if;

else —- Wrong 12C device address

Ackn <= "17;

state <= Start of package SO;

end if;

else
Ackn <= "1";
SIPO_reset <= "07;
SIPO_restart <= "0~;

end if;

when SIPO_internal_address_S2=>

if start_of block = "1* then
reset_start signal <= "17;
SIPO_reset <= "07;
SIPO_restart <= "1%;
Ackn <= "17;
State <= SIPO_I2C address S1;

elsif SIPO_is_full = "1" then
int_reg_address <= SIPO_data;
ackn <= "0%;
SIPO_reset <= "17;
SIPO_restart <= "0%;
reset_start signal <= "0";

State <= Restart_or_write data S3;

else
SIPO_reset <= "0%;
SIPO_restart <= "07;
ackn <= "1%;
reset_start signal <= "0";
end if;
when Restart _or_write data S3=>
if start of block = "1" then
reset_start signal <= "17;
SIPO_reset <= "07;
SIPO_restart <= "17;
Ackn <= "17;
State <= SIPO_I2C address_S1;
elsif SIPO_is_full = "1" then
Ackn <= "0";
State <= Start_of package SO;
SIPO_reset <= "17;
SIPO_restart <= "0%;
reset_start _signal <= "07;
case int_reg address is
when X"05" => reg5 out_sig
when X""06" => reg6_out_sig
when X""07"" => reg7_out_sig
when X""08" => reg8 out _sig
when X"09" => reg9 _out_sig
when others => null;
end case;
else
reset_start_signal <= "07;
Ackn <= "1%;
SIPO_reset <= "07;
SIPO_restart <= "07;
end if;
when Read data S4=>
Ackn <= "17;
if start_of block = "1" then
reset_start_signal <= "17;
SIPO_reset <= "07;
SIPO_restart <= "17;
State <= SIPO_I2C address_S1;

—--write to address

<= SIPO_data;
<= SIPO_data;
<= SIPO_data;
<= SIPO_data;
<= SIPO_data;

elsif PISO_all_is out = "1" and PISO_load_sig = "0" then

State <= Start _of _package SO;
PISO_load_sig <= "0";
SIPO_reset <= "17;
SIPO_restart <= "0%;
reset_start signal <= "0";

else
SIPO_reset <= "17;
SIPO_restart <= "0%;
reset_start _signal <= "07;
P1SO_load_sig <= "0%;

end if;

when others =>

reset_start _signal <= "17;

SIPO_reset <= "1%;

SIPO_restart <= "07;
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PISO_data <= (others => "0%);
when SIPO_12C address_S1=>
reset_start signal <= "17;
if SIPO_is_full = "1" then
SIPO_reset <= "17;
SIPO_restart <= "0";

PISO_reset <= "17;
State <= Start of _package SO;
end case;
end if;
end process;
end Behavioral;

B.22 Shift_piso_nbit.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

12C-bus

shift_piso_nbit - Behavioral
Distributed ISA

Xilinx - Spartan 3

—- Tool versions: Xilinx - ISE WebPACK 7.1i

-- Description: Shift register parallel in serial out
-- Revision: 14

-- Revision date: 20 July 2005

—-- Design Name:
—-- Module Name:
-- Project Name:
-- Target Device:

library IEEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE._STD LOGIC_ARITH.ALL;
use IEEE_STD LOGIC_UNSIGNED.ALL;

entity 12C_PISO is
generic (reg_width: integer:= 8); --reg_width = number of
--bits on the input
Port ( clk, reset, load : in std logic;
d_in : in std_logic_vector(reg width-1 downto 0);
shift_out : out std_logic;
all_is_out : out std logic);
end 12C_PISO;

architecture Behavioral of 12C PISO is

signal shift_reg:std_logic_vector(reg_width-1 downto 0);
signal counter:std_logic_vector(2 downto 0);

signal loaded:std_logic:="0";

begin
all_is_out <= "1" when counter = "111" else "0%;
shift_out <= shift_reg(shift_reg"high);

process(clk, reset)
begin
if reset="1" then
shift_reg <= (others => "1%);
counter <= ""111";
loaded <= "0°;
elsif clkevent and clk="0" then
if load="0" then
loaded<="0";
end if;
if load="1" and loaded="0" then
—-- waits for the load signal to go low again before reloading
-- the shift register
loaded<="1";
shift_reg <= d_in;
counter <= (others => "0%);
elsif counter < 111" then
shift_reg(reg_width-1 downto 1) <= shift _reg(reg_width-2
downto 0); --Shifts the register
shift_reg(0) <= "1%;
counter <= counter + 1;
else
shift_reg(shift_reg”high) <= "17;
end if;
end if;
end process;
end Behavioral;

—-- falling edge

B.23 12C _register_selector.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

12C-bus
12C_register_selector - Behavioral

—-- Design Name:
—-- Module Name:
-- Project Name:
-- Target Device:
—-- Tool versions: Xilinx - ISE WebPACK 7.1i

—-- Description: Shift register parallel in serial out
-- Revision: 14

-- Revision date: 20 July 2005

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity 12C_register_selector is
Port ( clk, reset : in std_logic;
reg_select _register : in std_logic_vector(7 downto
0);

reg Write : in std _logic;

input_register : in std_logic_vector(7 downto 0);
output_register : out std _logic_vector(7 downto 0);
reg0 : out std logic_vector(7 downto 0);

regl : out std logic_vector(7 downto 0);
reg2 : out std _logic_vector(7 downto 0);
reg3 : out std_logic_vector(7 downto 0);
reg4 : out std logic_vector(7 downto 0);
reg5 : in std_logic_vector(7 downto 0);
reg6 : in std logic vector(7 downto 0);

reg0 <= reg0_sig;
regl <= regl_sig;
reg2 <= reg2_sig;
reg3 <= reg3_sig;
regd <= regd_sig;

with reg_select_register select

output_register <= reg0_sig when X"00" ,
regl_sig when X"01" ,
reg2_sig when X"02" ,
reg3_sig when X"03" ,
regd_sig when X"'04" ,
reg5 when X"05"
regé when X"06"
reg7 when X"07"
reg8 when X"08"
reg9 when X"09"
X"FF" when others;

process(clk,
begin
if reset = "1" then
reg0_sig <= (others => "0%);
regl sig <= (others => "0%);
reg2_sig <= (others => "0%);
reg3_sig <= (others => "0%);
regd_sig <= (others => "0%);
elsif rising_edge(clk) then
if reg_Write = 1" then
case reg_select register is
when X""00" => reg0_sig<=input_register;

reset)
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reg7 : in std_logic_vector(7 downto 0);
reg8 : in std_logic_vector(7 downto 0);
reg9 : in std_logic vector(7 downto 0));

end 12C_register_selector;

architecture Behavioral of 12C_register_selector is
signal regO_sig,regl_sig, reg2 sig,reg3 sig,regd_sig :
std_logic_vector(7 downto 0);

begin

when X"01" => regl_sig<=input_register;
when X"02" => reg2_sig<=input_register;
when X""03" => reg3_sig<=input_register;
when X'"04" => reg4_sig<=input_register;
when others => null;
end case;
end if;
end if;

end process;

end Behavioral;

B.24 Shift_sipo.vhd

—--— Company: Hectronic AB
-- Engineer: Johan Johansson

12C-bus

shift_sipo - Behavioral
Distributed ISA

Xilinx - Spartan 3
Xilinx - ISE WebPACK 7.1i

—-- Design Name:
-- Module Name:
-- Project Name:
-- Target Device:
—-- Tool versions:

—-- Description: Shift register - serial in, parallel out.
- Indicates when a high bit has reached the
- highest position.

-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE.STD_LOGIC ARITH.ALL;
use IEEE.STD_LOGIC _UNSIGNED.ALL;

entity 12C_SIPO is
generic (reg_width: integer:= 8);
--reg_width = number of bits on the output
Port ( clk, reset, restart, d_in : in std _logic;
full_out : out std logic;
shift_out : out std_logic_vector(reg_width-1 downto
0);
end 12C_SIPO;

architecture Behavioral of 12C_SIPO is

signal restarted : std_logic;

signal counter : std_logic_vector(3 downto 0);

signal shift_reg : std_logic_vector(reg width-1 downto

begin
full_out <= "1" when counter = '1000" else "0";
pO:process(clk, reset)
begin
if reset = "1° then
counter <= "0000";
shift_reg <= (others => "0%);
elsif clkevent and clk="1" then
if restart = "1" and restarted
restarted <= "17;
counter <= "'0001"";
shift_reg(reg_width-1 downto
shift_reg(0) <= d_in;
elsif counter < "1000" then
counter <= counter + 1;
shift_reg(reg_width-1 downto
downto 0);
shift_reg(0) <= d_in;
end if;
if restart = "0" then
restarted <= "0";
end if;
end if;
end process;

= 0" then

1) <= ""0000000";

1) <=

shift_out <= shift_reg;

end Behavioral;

0);

shift_reg(reg_width-2

B.25 12C_start_signal_detector.vhd

—-- Company: Hectronic AB
-- Engineer: Johan Johansson

—-- Design Name:
—-- Module Name:
-- Project Name:
-- Target Device:

12C-bus_Start_signal_detector
12C_start_signal_detector - Behavioral
Distributed ISA

Xilinx - Spartan 3

—- Tool versions: Xilinx - ISE WebPACK 7.1i

-- Description: Detects a start of package

-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE_STD LOGIC_1164_ALL;
use IEEE_STD LOGIC_ARITH.ALL;
use IEEE_STD LOGIC_UNSIGNED.ALL;

entity 12C_start signal_detector is
Port ( clk25_100mhz : in std_logic;
reset : in std logic;
sclk : in std_logic;
sdata : in std logic;
start_signal : out std logic);
end 12C start_signal_detector;

architecture Behavioral of 12C_start_signal_detector is
signal counter : std_logic_vector(3 downto 0);

begin
process(clk25_100mhz,reset)
begin
if reset="1" then
start_signal <= "0";
counter <= "'0000";
elsif clk25 _100mhz"event and clk25_100mhz="1" then
100 mhz gives delay of 70 to 290 ns
if sdata = 1" then

counter <= "'0000";
elsif sclk = "1" and counter < **1000" then
counter <= counter +1;

if counter = ""0111" then
start_signal <= "1%;
end if;
else
counter <= ""1111";
end if;
end if;
end process;
end Behavioral;

--25 to
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B.26 Internal_register_manager_SNode.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

—-- Design Name: Slave Node

-- Module Name: Internal_register_manager - Behavioral
-- Project Name: Distributed 1SA

—-- Target Device: Xilinx - Spartan 3

—- Tool versions: Xilinx - ISE WebPACK 7.1i

-- Description: Manages the registers in the FPGA.

-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE_STD LOGIC_1164_ALL;

use IEEE_STD LOGIC_ARITH.ALL;
use IEEE_STD LOGIC_UNSIGNED.ALL;

entity Internal_register_manager_SNode is
Port ( clk, reset : in std_logic;

Data_in : in std_logic_vector(15 downto 0);
Data_out : out std_logic_vector(15 downto 0);
Address_in : in std_logic_vector(9 downto 0);
Read : in std_logic;
Write : in std_logic;
SBHE : in std_logic;
reg_transmission_ok : out std_logic;

12C_reg_select_register : out std_logic_vector(7 downto 0);

12C_writedata register : out std_logic_vector(7 downto 0);

12C_writedata register_write : out std logic; --Wire signals
12C_readdata_register : in std_logic vector(7 downto 0);

UART_Transmitter_holding_reg : out std_logic_vector(7 downto 0);

UART_Transmitter_holding_reg write : out std logic; —-Wire signals
UART_Receiver_buffer_reg : in std_logic_vector(7 downto 0);
UART_Receiver_buffer_reg read : out std logic; —-Wire signals

UART_Divisor_low_byte : out std_logic_vector(7 downto 0);
UART_Divisor_high_byte : out std_logic_vector(7 downto 0);
Fifo_status reg : in std_logic_vector(7 downto 0));

end Internal_register_manager_SNode;

architecture Behavioral of Internal_register_manager_SNode is

-- Generates internal signals so that the data on the outputs may be read back again
-- This should have the same effect as if "buffer® is used instead of “out”.

-- Because the "buffer” declaration has sometimes been misinterpreted by the simulator
—-- this method is used instead, for safety reson.

signal 12C_reg_select register_sig : std_logic_vector(7 downto 0);
signal 12C_writedata_register_sig : std logic_vector(7 downto 0);
signal 12C_writedata register_write_sig : std logic;

signal UART_Transmitter_holding_reg_sig : std_logic_vector(7 downto 0);
signal UART Transmitter_holding_reg_write_sig : std logic;

signal UART_Receiver_buffer_reg read sig : std logic;

signal UART Divisor_low_byte sig : std_logic_vector(7 downto 0);
signal UART_Divisor_high_byte sig : std_logic_vector(7 downto 0);

signal reg_transmission ok _sig : std_logic;
signal Scratch_reg_sig : std_logic_vector(7 downto 0);

begin

UART_Transmitter_holding_reg <= UART_Transmitter_holding_reg_sig;
UART_Transmitter_holding_reg write <= UART_Transmitter_holding_reg_write_sig;
UART_Receiver_buffer_reg_read <= UART_Receiver_buffer_reg read_sig;

reg_transmission_ok <= reg_transmission_ok_sig;

UART_Divisor_low_byte <= UART_Divisor_low_byte_sig;
UART_Divisor_high_byte <= UART_Divisor_high_byte sig;
12C_reg_select _register <= 12C_reg_select register_sig
12C_writedata_register <= 12C_writedata_register_sig;
12C_writedata register_write <= 12C_writedata_register_write_sig;

process(clk, reset)
begin
if reset = "1" then

UART_Transmitter_holding_reg_sig <= (others => "0%);
UART_Transmitter_holding_reg write_sig <= "0";
UART_Receiver_buffer_reg_read sig <= "07;
UART_Divisor_low_byte sig <= (others => "07);
UART_Divisor_high byte_sig <= (others => "0%);

if register is written to

if register is written to

if register is read from
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reg_transmission ok_sig <= "0";

Scratch_reg_sig <= (others => "07);
12C_reg_select _register_sig <= (others => "0");
12C_writedata _register_sig <= (others => "0%);
12C_writedata _register_write_sig <= "0";

elsif rising_edge(clk) then

if UART_Transmitter_holding_reg_write_sig = "1" or UART_Receiver_buffer_reg_read sig

or 12C_writedata register_write_sig = "1" then
UART_Transmitter_holding_reg write_sig <= "0";
UART_Receiver_buffer_reg read_sig <= "0";
12C_writedata register_write_sig <= "0";
elsif reg_transmission ok_sig = "1" then
if read = 0" and write = "0" then
reg_transmission_ok_sig <= "0";
end if;

="1"

elsif read = "1° then Read from registers:
reg_transmission_ok_sig <= "1%;
if SBHE = "1" then --SBHE=1 => Signal bus is not high enabled - 8bit
case address_in is
when ""11" & X"E8" => --1000
Data_out(7 downto 0) <= UART_Receiver_buffer_reg;
UART_Receiver_buffer_reg_read sig <= "1%;
when 11" & X"E9" => --1001
Data_out(7 downto 0) <= X"FF'";
when 11" & X"EA"™ => --1002
Data_out(7 downto 0) <= UART_Divisor_low_byte sig;
when ""11" & X"EB" => --1003
Data_out(7 downto 0) <= UART_Divisor_high_byte_sig;
when 11" & X"EC" => --1004
Data_out(7 downto 0) <= Fifo_status reg;
when 11" & X"ED" => --1005
Data_out(7 downto 0) <= Scratch_reg_sig;
when 11" & X"EE" => --1006
Data_out(7 downto 0) <= 12C_reg_select register_sig;
when 11" & X"EF'" => --1007
Data_out(7 downto 0) <= 12C_readdata_register;
when others =>
Data_out(7 downto 0) <= X"FF'";
end case;
else --SBHE=0 => Signal bus is high enabled - 16bit
case address_in is
when ""11" & X"E8" => --1000
Data_out <= UART_Receiver_buffer_reg & X"FF";
UART_Receiver_buffer_reg_read sig <= "1%;
when ""11" & X"E9" => --1001
Data_out <= X"FFFF'";
when ""11" & X"EA"™ => --1002
Data_out(7 downto 0) <= UART_Divisor_low_byte sig;
Data_out(15 downto 8) <= UART_Divisor_high_byte sig;
when 11" & X"EB" => --1003
Data_out(15 downto 8) <= UART_Divisor_high_byte sig;
when ""11" & X"EC" => --1004
Data_out(7 downto 0) <= Fifo_status reg;
Data_out(15 downto 8) <= Scratch_reg_sig;
when 11" & X"ED" => --1005
Data_out(15 downto 8) <= Scratch reg_sig;
when 11" & X"EE" => --1006
Data_out(7 downto 0) <= 12C_reg_select register_sig;
Data_out(15 downto 8) <= 12C_readdata register;
when 11" & X"EF'" => --1007
Data_out(15 downto 8) <= 12C_readdata register;
when others =>
Data_out <= X"FFFF';
end case;
end if;
elsif write = "1" then Write to registers

reg_transmission_ok_sig <= "1%;
if SBHE = "1" then --SBHE=1 => Signal bus is not high enabled - 8bit
case address_in is
when ""11" & X"E8" => --1000
UART_Transmitter_holding_reg_sig <= Data_in(7 downto 0);
UART_Transmitter_holding_reg write_sig <= "17;
when ""11" & X"EA"™ => --1002
UART_Divisor_low_byte sig <= Data_in(7 downto 0);
when "'11" & X"EB" => --1003
UART_Divisor_high_byte_sig <= Data_in(7 downto 0);
when *'11" & X"ED" => --1005
Scratch_reg_sig <= Data_in(7 downto 0);
when ""11" & X"EE"™ => --1006
12C_reg_select _register_sig <= Data_in(7 downto 0);
when 11" & X"EF" => --1007
12C_writedata _register_sig <= Data_in(7 downto 0);
12C_writedata _register_write_sig <= "17;
when others => null;
end case;
else --SBHE=0 => Signal bus is high enabled - 16bit
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case address_in is
when "11" & X"E8" => --1000

UART_Transmitter_holding_reg_sig <= Data_in(7 downto 0);

UART_Transmitter_holding_reg_write_sig <= "17;

when 11" & X"EA" => --1002
UART_Divisor_low_byte sig <= Data_in(7 downto 0);
UART_Divisor_high_byte_sig <= Data_in(15 downto 8);

when 11" & X"EB" => --1003
UART_Divisor_high_byte_sig <= Data_in(15 downto 8);

when ""11" & X"ED" => --1005
Scratch_reg_sig <= Data_in(15 downto 8);

when ""11" & X"EE"™ => --1006
12C_reg_select _register_sig <= Data_in(7 downto 0);
12C_writedata _register_sig <= Data_in(15 downto 8);
12C_writedata register_write_sig <= "1°;

when 11" & X"EF'" => --1007
12C_writedata_register_sig <= Data_in(15 downto 8);
12C_writedata _register_write_sig <= "1°;

when others => null;

end case;
end if;
end if;
end if;
end process;
end Behavioral;

B.27 IRQ in.vhd

—-- Company: Hectronic AB
-- Engineer: Johan Johansson

Slave Node
IRQ_in - Behavioral

—-- Design Name:
-- Module Name:
-- Project Name:
-- Target Device:
-- Tool versions:
-- Description:
and keeps track

Xilinx - ISE WebPACK 7.1i
Samples the interrupt segnals on the ISA bus

- of which interrupt lines that have been
pulled.

-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity IRQ in is
Port ( clk, reset: in std logic;
Data_from Ivds : in std_logic_vector(15 downto 0);
IRQ_read ok : out std_logic;
IRQ_out : out std_logic;
IRQ_count_ready : in std_logic;
IRQ3, IRQ4, IRQ5, IRQ6, IRQ7, IRQ9, IRQ1O, IRQ11,
IRQ12, IRQ13, IRQ14: in std_logic); --These signals are pulluped
end IRQ_in;

architecture Behavioral of IRQ_in is

signal sampling_done : std logic;

Signal Prev_state IRQ3, Prev_state IRQ4, Prev_state IRQ5,
Prev_state_IRQ6, Prev_state IRQ7, Prev_state_ IRQ9,
Prev_state_IRQ10, Prev_state IRQ11l, Prev_state IRQ12,
Prev_state_IRQ13, Prev_state IRQ14 : std logic;

--Signals stores the previous value of the IRQ-wire. The
——interrupt signal from O to 1 can then be detected by comparing
—--with the present value.

Signal Signal_pulled_IRQ3, Signal_pulled_IRQ4,

Signal_pulled_IRQ5, Signal_pulled_IRQ6, Signal_pulled_IRQ7,
Signal_pulled_IRQ9, Signal_pulled_IRQ10,

Signal_pulled_IRQ11, Signal_pulled IRQ12, Signal_pulled_IRQ13,
Signal_pulled_IRQ14 : std_logic; --Signals stores if the

interruptline has been interupted or not.

begin

process(clk, reset)
begin
if reset="1" then
IRQ read ok <= "0";

when "'0100" => --1RQ4

IRQ_out <= Signal_pulled_IRQ4; --1RQ state sampled

Signal_pulled_IRQ4 <= "0";
when "0101" => --1RQ5

IRQ_out <= Signal_pulled_ IRQ5;

Signal_pulled_IRQ5 <= "0;
when "0110" => —IRQ6

IRQ_out <= Signal_pulled_IRQ6;

Signal_pulled_IRQ6 <= "0";
when "'0111" => --1RQ7

IRQ_out <= Signal_pulled_IRQ7;

Signal_pulled_IRQ7 <= "0";
when "1001"" => --1RQ9

IRQ_out <= Signal_pulled_IRQ9;

Signal_pulled_IRQ9 <= "07;
when "1010" => --1RQ10

IRQ_out <= Signal_pulled_IRQ10; --1RQ_state sampled

Signal_pulled_IRQ10 <= "07;
when *"1011" => --1RQ11

IRQ_out <= Signal_pulled_IRQ11;

Signal_pulled_IRQ11l <= "0%;
when **1100" => --1RQ12

IRQ out <= S

Signal_pulled_IRQ12 <= "07;
when ""1101" => --1RQ13

IRQ_out <= Signal_pulled_IRQ13;

Signal_pulled_IRQ13 <= "07;
when 1110 => --1RQ14

IRQ_out <= Signal_pulled_IRQ14;

Signal_pulled_IRQ14 <= "0%;
when others => IRQ out <= "0";
end case;
elsif IRQ_count_ready = "0" then
sampling_done <= "0";
IRQ_read ok <= "0";
IRQ_out <= "0~;
end if;

if Prev_state_IRQ3 = "0" and IRQ3
Signal_pulled_IRQ3 <= "1%;

end if;

if Prev_state IRQ4 = "0" and IRQ4
Signal_pulled_IRQ4 <= "17;

end if;

if Prev_state IRQ5 = "0" and IRQ5
Signal_pulled_IRQ5 <= "17;

end if;

if Prev_state IRQ6 = "0" and IRQ6
Signal_pulled_IRQ6 <= "17;

end if;

if Prev_state IRQ7 = "0" and IRQ7
Signal_pulled_IRQ7 <= "17;

end if;

iT Prev state IRQ9 = "0" and IRQ9

ignal_pulled IRQ12;

--1RQ_state sampled

--IRQ_state sampled

--IRQ_state sampled

--IRQ_state sampled

-

"

.-

.-

-1

-1-

then

then

then

then

then

then

--IRQ_state sampled

--IRQ_state sampled

--1RQ_state sampled

--1RQ_state sampled
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IRQ out <= "0"; Signal_pulled_IRQ9 <= "17;

end if;
Prev_state IRQ3 <= "17; if Prev_state IRQ10 = "0" and IRQ10 = "1" then
Prev_state IRQ4 <= "17; Signal_pulled_IRQ10 <= "1%;
Prev_state_IRQ5 <= "17; end if;
Prev_state_IRQ6 <= "17; if Prev_state_IRQ11 = "0" and IRQ11l = "1" then
Prev_state_IRQ7 <= "17; Signal_pulled_IRQ11 <= "17;
Prev_state_IRQ9 <= "17; end if;
Prev_state IRQ10 <= "17; if Prev_state IRQ12 = "0" and IRQ12 = "1" then
Prev_state IRQ11 <= "17; Signal_pulled_IRQ12 <= "17;
Prev_state IRQ12 <= "17; end if;
Prev_state IRQ13 <= "17; if Prev_state IRQ13 = "0" and IRQ13 = "1" then
Prev_state IRQ14 <= "17; Signal_pulled_IRQ13 <= "17;

end if;
Signal_pulled_IRQ3 <= "0"; if Prev_state IRQ14 = "0" and IRQ14 = "1" then
Signal_pulled_IRQ4 <= "0"; Signal_pulled_IRQ14 <= "17;
Signal_pulled_IRQ5 <= "0 end if;

Signal_pulled_IRQ6 <= "0
Signal_pulled_IRQ7 <= "0*
Signal_pulled_IRQ9 <= "07;

Prev_state IRQ3 <= IRQ3;
Prev_state IRQ4 <= IRQ4;

TR

Signal_pulled_IRQ10 <= "0%; Prev_state IRQ5 <= IRQ5;
Signal_pulled_IRQ11l <= "0%; Prev_state IRQ6 <= IRQ6;
Signal_pulled_IRQ12 <= "0%; Prev_state IRQ7 <= IRQ7;
Signal_pulled_IRQ13 <= "07; Prev_state_ IRQ9 <= IRQ9;
Signal_pulled_IRQ14 <= "07; Prev_state_IRQ10 <= IRQ10;
Prev_state IRQ11 <= IRQ11;
elsiT rising_edge(clk) then Prev_state IRQ12 <= IRQ12;
if IRQ_count ready = "1 and sampling_done = "0" then Prev_state IRQ13 <= IRQ13;
sampling_done <= "1%; Prev_state_IRQ14 <= IRQ14;
IRQ _read ok <= "1%;
case Data from Ivds(3 downto 0) is --1RQ state to sample end if;
when "'0011" => --1RQ3 end process;
IRQ out <= Signal_pulled_IRQ3; --IRQ_state sampled end Behavioral;

Signal_pulled_IRQ3 <= "0";

B.28 ISA_master.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

—-- Design Name: Slave Node

-- Module Name: ISA_master - Behavioral

—-- Project Name: Distributed I1SA

—-- Target Device: Xilinx - Spartan 3

—-— Tool versions: Xilinx - ISE WebPACK 7.1i

—-- Description: Acts as an ISA Master and sends and receives
- data from the slaves on the bus.

-- Revision: 14
-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC_1164.ALL;

use IEEE.STD_LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ISA master is
Port ( SA : out std_logic_vector(9 downto 0);
—--Address bus from ISA
SD : inout std_logic vector(15 downto 0) := (others => "Z%);

BCLK_sync833 out : out std_logic; --BCLK clock out 8.33 Mhz
AEN : out std_logic; --AEN = "0" => no DMA
SBHE_out : out std_logic; —-ISA SBHE# out

IORC : out std_logic;
1I0WC : out std_logic;
BALE : out std_logic;
1016 : in std_logic;
CHRDY : in std _logic;
NOWS : in std_logic;

clk : in std_logi
reset : in std logic;

address_in : in std_logic_vector(9 downto 0); --Address bus from "master_node_state_machine*
data_in : in std_logic_vector(15 downto 0); --Data bus from "master_node_state_machine®
data_out : out std_logic_vector(15 downto 0); --Data bus to "master_node_state_machine”

read data : in std_logic; --Read data command

write_data : in std_logic; --Write data command

SBHE_in : in std_logic;
transmission ok : out std_logic);
--signals that transmission to ISA device is completed
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end ISA master;

architecture Behavioral of ISA master is

type state_type is (Groundstate SRWO, --Ground state
State_SW1, State BALE SW2, State SW3, State I0NC_Sw4,
State_SW5, State CHRDYNNOWS_SW6, State SW7, State_delay8bitl_SW8, State SW9,
State_delay8bit2_SW10, State SW1l, State _delay8nl6bit3 SW12, State Endfirst8bitcycle SW13,
State_Beginnext8bitcycle SW14, State Endwritecycle_SW15, State holddataonbus_SWi16,
--Writestates above and Read states below
State_SR1, State BALE SR2, State SR3, State IORC_SR4,
State SR5, State CHRDYNNOWS_SR6, State SR7, State_delay8bitl_SR8, State SR9,
State_delay8bit2_SR10, State SR11, State delay8nl6bit3 SR12, State Endfirst8bitcycle SR13,
State_Beginnext8bitcycle_SR14, State Endreadcycle_SR15,
State_Waitforcommandreset_SRW20); --End state

signal state : state_type:= Groundstate SRWO;

signal Data_in_latch : std_logic_vector(15 downto 0);

signal Address_in_latch : std_logic_vector(9 downto 0);

signal 1016_latched, SBHE out_sig : std logic;

signal Count_last_byte : std_logic;

signal 1SA_timer_count : std_logic_vector(2 downto 0):= *"000";
signal BCLK 833 in : std_logic:= "0";

begin

AEN <= "0";

ISA_timer: process(CLK, reset)
begin
if reset = "1" then
ISA_timer_count <= "000";
BCLK_833_in <= "0~;
elsif CLK"event and CLK = "1" then
if ISA_timer_count = "010" then -- BCLK 833 in == CLK (50MHz) * 6 (= 8.3333 MHz)
BCLK_833_in <= not BCLK_833_in;

ISA_timer_count <= ""000";
else
ISA_timer_count <= ISA_timer_count +1;
end if;
end if;

end process;

p0: process(CLK, reset)
begin
if reset = "1° then
SD <= (others => "Z%);
SA <= (others => "1%);
BALE <= "07;
IORC <= "1°7;
I0WC <= "17;
state <= Groundstate_SRWO;
Count_last _byte <= "0%;
BCLK_sync833_out <= "0";
transmission ok <= "0%;

elsif CLK"event and CLK = "1" then -- Sampling clock faster than 16 MHz if BCLK is 8 MHZ
BCLK_sync833_out <= BCLK_833_in;
case state is --ISA-master_State machine
when Groundstate SRWOQ => -——————————————— GROUND STATE

SD <= (others => "Z%);
BALE <= "0";
I0RC <= "17;
1I0WC <= "17;

Count_last _byte <= "07;
Data_in_latch <= data_in;
Address_in_latch <= address_in;
SBHE_out_sig <= SBHE_in;

if read data = "1" then

state <= State SR1; --Jumps to READ command states
elsif write_data = 1" then
state <= State SW1; --Jumps to WRITE command states
end if;
when State_ SW1 =>  —————————m—————— STATES FOR WRITE COMMAND

if BCLK 833_in = "1" then
state <= State BALE SW2;
end if;
when State BALE SW2 => -- BALE is asserted as BCLK goes low
if BCLK_833_in = "0" then
SD <= Data_in_latch;
SA <= Address_in_latch;
SBHE_out <= SBHE out_sig;
BALE <= "1%;
state <= State SW3;
end if;
when State_SW3 => -- BALE 1is deasserted to tell devices that the address is latched
if BCLK 833_in = "1" then
state <= State_IOWC_SW4;
BALE <= "0~;
end if;
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when State IOWC_SW4 => -- IOWC is asseted
if BCLK 833 in = "0" then
state <= State SW5;
IOWC <= "0%;
end if;
when State SW5 =>
if BCLK 833_in = 1" then
state <= State CHRDYNNOWS_SW6;
end if;
when State_CHRDYNNOWS_SW6 =>
if BCLK 833_in = "0" then
if 1016 = "1" then --(8bit_device)
if SBHE_out_sig = "0" then --(high address)
if Count_last byte = "0" and Address_in_latch(0)="0" then --Even address & first byte
if NOWS = "0" and CHRDY = "1" then -- end early
state <= State Endfirst8bitcycle SW13;
else
state <= State SW7;
end if;
else
Count_last _byte <= "1%;
SD(7 downto 0) <= Data_in_latch(15 downto 8); --Odd addressed data in high databus
if NOWS = "0" and CHRDY = "1" then -- end early
state <= State Endwritecycle_SW15;
else
state <= State SW7;
end if;
end if;
else ——-(low address)
Count_last byte <= "17;
if NOWS = "0" and CHRDY = "1" then -- end early
state <= State Endwritecycle_SW15;
else
state <= State SW7;
end if;
end if;
else --(16bit_device)
Count_last byte <= "1%;
if CHRDY = "1" then -- end early
state <= State_Endwritecycle SWi15;
else --extend cycle
state <= State SW11;
end if;
end if;
end if;
when State SW7 => --delay because 8 bit device transfer
if BCLK 833_in = "1" then
state <= State_delay8bitl_SW8;
end if;
when State_delay8bitl _SW8 =>
if BCLK_833_in = "0" then
if NOWS = "0" and CHRDY = "1" then --Early end of bus cycle
if Count_last byte = "1" then
state <= State Endwritecycle_SW15;
else
state <= State Endfirst8bitcycle SW13;
end if;
else
state <= State_SW9;
end if;
end if;
when State _SW9 =>
if BCLK 833_in = 1" then
state <= State_delay8bit2 SW10;
end if;
when State_delay8bit2_SW10 =>
if BCLK_833 in = "0" then
if NOWS = "0" and CHRDY = "1* then --Early end of bus cycle
if Count_last byte = "1" then
state <= State_Endwritecycle SWi15;

else
state <= State_ Endfirst8bitcycle SW13;
end if;
else
state <= State SW11;
end if;
end if;

when State SW11 =>
if BCLK 833 _in = "1" then
state <= State_delay8nl16bit3 _SW12;
end if;
when State_delay8nl6bit3 SW12 =>
if BCLK_833_in = "0" then
if CHRDY = "1" then —- avsluta
if Count_last byte = "1" then
state <= State Endwritecycle_SW15;
else
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state <= State Endfirst8bitcycle SW13;
end if;
else -- bromsa
state <= State_SW11;
end if;
end if;
when State_Endfirst8bitcycle _SW13 =>
Count_last byte <= "17;
if BCLK_833 in = "1" then

1I0WC <= "17;
state <= State_Beginnext8bitcycle_SW14;
end if;

when State Beginnext8bitcycle SW14 =>
if BCLK 833_in = "0" then
BALE <= "1%;
SD(7 downto 0) <= Data_in_latch(15 downto 8);
SA(0) <= "17; —-- increase even address to address +1
state <= State_ SW3;
end if;
when State Endwritecycle_SW15 =>
if BCLK 833 _in = "1" then
I0WC <= "1%;
transmission_ok <= "0%;
state <= State_holddataonbus_SW16;
end if;
when State_holddataonbus_SW16 =>
if BCLK_833_in = "0" then
transmission ok <= "1%;
state <= State Waitforcommandreset SRW20;
end if;
when State SR1 =>  ————————mmmm—— STATES FOR READ COMMAND
if BCLK 833_in = 1" then
state <= State BALE SR2;
end if;
when State BALE SR2 =>
if BCLK_833 in = "0" then
SA <= Address_in_latch;
SBHE out <= SBHE out sig;

BALE <= "1";
state <= State SR3;
end if;

when State SR3 =>
if BCLK 833_in = "1" then
state <= State_ IORC_SR4;
BALE <= "0";
end if;
when State_IORC_SR4 =>
if BCLK 833_in = "0" then
state <= State_ SR5;
I0RC <= "0;
end if;
when State_SR5 =>
if BCLK 833_in = "1" then
state <= State CHRDYNNOWS_SR6;
end if;
when State_ CHRDYNNOWS_SR6 =>
if BCLK 833 in = "0 then
1016_latched <= 1016;
if 1016 = "1" then --(8bit _device)
if SBHE out_sig = "0" then --(high address)
if Count_last byte = "0 and Address_in_latch(0)="0" then --Even address & first byte
if NOWS = "0" and CHRDY = "1" then -- end early
state <= State Endfirst8bitcycle SR13;
else
state <= State SR7;
end if;
else
Count_last _byte <= "1%;
if NOWS = "0" and CHRDY = "1" then -- end early
state <= State_Endreadcycle_SR15;
else
state <= State SR7;
end if;
end if;
else ——(low address)
Count_last byte <= "1%;
if NOWS = "0" and CHRDY = "1" then -- end early
state <= State_Endreadcycle SR15;
else
state <= State_ SR7;
end if;
end if;
else --(16bit_device)
Count_last byte <= "17;
if CHRDY = "1" then -- end early
state <= State Endreadcycle_SR15;
else --extend cycle
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state <= State SR11;
end if;
end if;
end if;
when State_SR7 =>
if BCLK_833 in = "1" then
state <= State_delay8bitl_SR8;
end if;
when State_delay8bitl SR8 =>
if BCLK_833 in = "0" then
if NOWS = "0" and CHRDY = "1" then -- Early end of bus cycle
if Count_last byte = "1" then
state <= State_Endreadcycle_SR15;
else
state <= State Endfirst8bitcycle SR13;
end if;
else
state <= State_ SR9;
end if;
end if;
when State SR9 =>
if BCLK 833_in = "1" then
state <= State_delay8bit2_SR10;
end if;
when State_delay8bit2_SR10 =>
if BCLK_833_in = "0" then
if NOWS = "0" and CHRDY = "1" then -- Early end of bus cycle
if Count_last byte = "1" then
state <= State Endreadcycle_SR15;
else
state <= State Endfirst8bitcycle SR13;
end if;
else
state <= State SR11;
end if;
end if;
when State SR11 =>
if BCLK_833 in = "1" then
state <= State_delay8nl6bit3 _SR12;
end if;
when State_delay8nl6bit3 SR12 =>
if BCLK_833 in = "0" then
if CHRDY = "1" then -- avsluta
if Count_last byte = "1" then
state <= State_Endreadcycle_SR15;
else
state <= State Endfirst8bitcycle SR13;
end if;
else -- bromsa
state <= State SR11;
end if;
end if;
when State_Endfirst8bitcycle _SR13 =>
Count_last byte <= "1%;
if BCLK 833_in = "1" then
IORC <= "17;
Data _out(7 downto 0) <= SD(7 downto 0);
state <= State Beginnext8bitcycle_SR14;
end if;
when State Beginnext8bitcycle SR14 =>
if BCLK 833 in = "0" then
BALE <= "1%;
SD <= (others => "Z%);
SA(0) <= "17; -- increase even address to address +1
state <= State SR3;
end if;
when State Endreadcycle SR15 =>
if BCLK 833 in = "1" then
IORC <= "1%;
transmission_ok <= "0%;
state <= State_Waitforcommandreset_SRW20;
if 1016_latched = "1* then --(8bit)
if SBHE_out_sig = "0" then --(high address)
if Address_in_latch(0) = "0" then --(was even, SD is now odd (even+l))
Data_out(15 downto 8) <= SD(7 downto 0);
else
Data_out(15 downto 8) <= SD(7 downto 0);
end if;
else
Data_out(7 downto 0) <= SD(7 downto 0);
end if;
else --(16bit)
Data_out <= SD; --whole bus
end if;
end if;
when State Waitforcommandreset SRW20 => END STATE

if read data = "0" and write data = "0" then
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Count_last byte <= "07;
transmission ok <= "0";
state <= Groundstate SRWO;

else
transmission ok <= "1%;
end if;
when others =>
state <= State Waitforcommandreset SRW20; -- Takes care of undefined states
end case;
end if;

end process;
end Behavioral;

B.29 ISA_master_input_flipflop.vhd

—--— Company: Hectronic AB
—-- Engineer: Johan Johansson

Slave Node

ISA master_input_flipflop - Behavioral
Distributed ISA

Xilinx - Spartan 3

—-- Tool versions: Xilinx - ISE WebPACK 7.1i

—-- Description: Generates flip-flops that samples the
- asynchronous signals from the ISA bus.
- Result is read by ISA master.

-- Revision: 14

-- Revision date: 20 June 2005

—-- Design Name:
-- Module Name:
—-- Project Name:
-- Target Device:

library IEEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE.STD_LOGIC ARITH.ALL;
use IEEE.STD_LOGIC _UNSIGNED.ALL;

entity ISA master_input_flipflop is
Port ( clk : in std_logic;
1016 : in std_log

CHRDY : in std _logic;

NOWS : in std_logic;

1016_out : out std_logic;
CHRDY_out : out std_logic;
NOWS_out : out std_logic);

end ISA master_input_flipflop;

architecture Behavioral of ISA master_input_flipflop is
begin

Dvippa: process(clk) --All input signals (that a state jump
- depends upon) has to to be syncronized
begin
if rising_edge(clk) then
1016_out <= 1016;
CHRDY_out <= CHRDY;
NOWS_out <= NOWS;
end if;
end process;

end Behavioral;

B.30 ISA_master_termination.vhd

—-- Company: Hectronic AB
-- Engineer: Johan Johansson

Slave Node

ISA _master_termination - Behavioral
Distributed ISA

Xilinx - Spartan 3

Xilinx - ISE WebPACK 7.1i

—- Design Name:
—-- Module Name:
-- Project Name:
-- Target Device:
-- Tool versions:

-- Description: Handles the termination of some unuses ISA
bus wires.
-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC UNSIGNED.ALL;

entity ISA_master_termination is
Port ( DMA_ack : inout std_logic_vector(7 downto 0);
SA : inout std_logic_vector(19 downto 10);
reset_ISA dev : inout std_logic;
MRDC : inout std_logic;
MWTC : inout std_logic);
end ISA master_termination;

architecture Behavioral of ISA_master_termination is

begin

DMA_ack <= (others => "H"); --use pullUP on io pads in
--constraints file
—--use pul IDOWN on io pads in
--constraints file
—--use pullUP on io pads in
--constraints file

reset_ISA dev <= "L";
MRDC <= "H";

MWTC <= "H";
SA <= (others => "Z%); —--use pullUP on io pads in
--constraints file

end Behavioral;
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B.31 Slave node_state_machine.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

—-- Design Name: Slave Node

—-- Module Name: Slave_node_state _machine - Behavioral
-- Project Name: Distributed 1SA

—-- Target Device: Xilinx - Spartan 3

—-— Tool versions: Xilinx - ISE WebPACK 7.1i

-- Description: The main state machine in the slave node. Handles the
- communication between modules.
-- Revision: 14

-- Revision date: 20 June 2005

library IEEE;

use IEEE_STD LOGIC_1164_ALL;

use IEEE.STD LOGIC_ARITH.ALL;
use IEEE_STD LOGIC_UNSIGNED.ALL;

entity Slave_node_state machine is
Port ( clk : in std_logic;

reset : in std logic;
Ivds_transmission bad : in std_logic;
Ivds_transmission_ok : in std_logic;
dev_transmission_ok : in std_logic;
reg_transmission_ok : in std _logic;
IRQ_read ok : in std_logic;
IRQ_count_ready : out std_logic;
IRQ_sampled : in std_logic;
readl writeO : in std_logic;
Ivds_out ready : in std logic;
slave_transmission_timeout : in std_logic;
reset_slave_transmission_timer : out std_logic;
Ivds_transmitt_enable : out std_logic;
dev_read : out std_logic;
dev_write : out std_logic;
reg _read : out std logic;
reg write : out std_logic;
Ivds_data send : out std_logic;
Ivds_receive_reset : out std_logic;

readl_writeO_out : out std logic;

SBHE_out : out std_logic;

Data_from ISA in : in std_logic_vector(15 downto 0);
Data_from reg_in : in std_logic_vector(15 downto 0);
infobits_from LVDS in : in std _logic_vector(3 downto 0);
Data out : out std logic_vector(15 downto 0);
Address_out : out std_logic_vector(9 downto 0);
Addres_from lIvds_in : in std logic_vector(9 downto 0);
info_bits _out : out std _logic_vector(3 downto 0));

end Slave_node_state_machine;

architecture Behavioral of Slave_node_state machine is

type state_type is (Wait_for_lvds_receive_SO, Wait_for_device_receive _S1, LVDS_send_S2,
LWDS_ack S3, End of lvds _cycle_S4, Device command_reset_S5);

signal State : state_type;

begin

info_bits_out <= "0000";

Address_out <= Addres_from lvds_in;

readl_write0 _out <= "07;

SBHE_out <= "0";

Mealy_syncout:process(clk,reset) -- Mealy Statemachine with synchronous outputs
begin
if reset="1" then
State <= Wait_for_lvds_receive_S0;
dev_read <= "0;
dev_write <=
reg_read <= "0%;
reg write <= "0°;
reset_slave_transmission_timer <= "17;
Ivds_transmitt_enable <= "0~;
Ivds_data_send <= "0";
Ivds_receive_reset <= "17;
IRQ_count_ready <= "0";
Data_out <= X'"0000';

elsif rising_edge(clk) then
case State is
when Wait_for_lvds_receive S0=> —-Wait for data and command from Ivds module
reset_slave_transmission_timer <= "17;
Ivds_data_send <= "0";
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if lvds_transmission_bad ="1" then —-1f bad transmission the receive module is reset and a new message is waited for
Ivds_receive_reset <= "1%;
elsif lvds_transmission_ok = "1% then —--Data is received and passed the error check
if infobits_from_LVDS_in(2) = "1" then --interrupt request bit
State <= Wait_for_device_receive_S1;
IRQ_count_ready <= "17;
elsif Addres_from_lvds_in(9 downto 3) = ""1111101" then --3E8 to 3EF = internal registers
State <= Wait_for_device_receive_S1;
if readl write0 = "1" then
reg read <= "17;

else
reg_write <= "1%;
end if;
else —- read or write command is directed to the isa bus connected to this slave node

State <= Wait_for_device_receive S1;
if readl write0 = "1" then
dev_read <= "1°;

else
dev_write <= "1°;
end if;
end if;
else
Ivds_receive_reset <= "0";
end if;
when Wait_for_device_receive_S1=> --Wait for register, device or interupt module to finish transmission
reset_slave_transmission_timer <= "0";
if reg_transmission_ok = "1% then —--Register command is executed

State <= LVDS_send_S2;
Data_out <= Data_from_reg_in;
Ivds_transmitt_enable <= "17;
elsif dev_transmission ok = "1" then --Device command is executed
State <= LVDS_send_S2;
Data_out <= Data_from_ISA in;
Ivds_transmitt_enable <= "17;
elsif IRQ _read ok = "1" then --IQR command (polling) is executed
State <= LVDS_send_S2;
Data out <= X'000" & "'000" & IRQ _sampled;
Ivds_transmitt_enable <= "17;
elsif slave_transmission_timeout = "1° then --Timeout - NO command is executed in specified time
State <= Device_command_reset_S5;
IRQ_count_ready <= "07;
reg_read <= "0";
reg write <= "0°;
dev_read <= "0;
dev_write <= "0";
Ivds_receive _reset <= "1%;
end if;
when LVDS_send S2=> --Send reply to master node via lvds
State <= LVDS_ack S3;
Ivds_data_send <= "17;
reset_slave_transmission_timer <= "1%;
when LVDS_ack S3=> —--lvds module acknowledges the command by setting lvds_out ready line to 0"
if lvds_out ready = 0" then
State <= End_of_lvds_cycle_S$4;
Ivds_data_send <= "0";
IRQ_count_ready <= "0";
reg read <= "0";
reg write <= "0%;
dev_read <= "0";
dev_write <= "07;
end if;
when End_of_lvds_cycle_S4=> —--Wait for the lvds module to completing the transmission
if Ivds out ready = 1" then
State <= Device_command_reset _S5;
Ivds_transmitt_enable <= "0~;
Ivds_receive_reset <= "1%;
end if;
when Device _command_reset_S5=> --Wait for transmission =ok command to reset
if dev_transmission_ok = "0" and reg_transmission ok = "0 and IRQ_read_ok ="0" then
reset_slave_transmission_timer <= "17;
State <= Wait_for_lvds_receive _SO;
end if;
when others => State <= Wait_for_lvds_receive_SO;
end case;
end if;
end process;

end Behavioral;
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B.32 Slave transm_timer.vhd

—-- Company: Hectronic AB
—-- Engineer: Johan Johansson

—-- Design Name:
-- Module Name:
-- Project Name:
-- Target Device:
—-- Tool versions:
-- Description:

-- Revision:
-- Revision date:

Slave Node

slave_transm_timer - Behavioral

Distributed ISA

Xilinx - Spartan 3

Xilinx - ISE WebPACK 7.1i

Generates a timeout signal when the ISA
device on the slave node has held CHRDY too
long. This will return X"FFFF" to the master
node.

14
20 June 2005

library IEEE;

use IEEE.STD LOGIC_1164_ALL;
use IEEE.STD LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL ;

entity slave_transm timer is

Port ( clk, reset :

in std_logic;

slave_transmission_timout : out std logic);
end slave_transm_timer;

architecture Behavioral of slave_transm timer is
signal counter : std logic_vector(15 downto 0);

begin

—-Timeout at 15 us

--Vid MHZ clk —--—- Count to

--10 150 = X''0096"
--25 375 = X"0177"
--50 750 = X"O2EE"
--100 1500 = X'05DC**
--200 3000 = X'*0BB8"

timer:process(clk, reset)
begin
if reset = "1 then
slave_transmission_timout <= "0%;
counter <= (others => "0%);
elsif clk"event and clk ="1" then
if counter <= X"0052" then

--0,54 us
counter <= counter + 1; --X""0032" && clk
--1,0 us
else --X""0052" && clk
--1,65 us
slave_transmission_timout <= "1%;
end if;
end if;

end process;
end Behavioral;

--X""0019" && clk

50 MHz

50 MHz

50 MHz

=

=
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Appendix C — Schematic

C.1 Master_Node_top-level

(See the A3 printout on the following page)

C.2 Slave_Node_top-level

(See the A3 printout on the following page)
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D IRQ13 D
IRQ14
data_Ivds_in(15:0)———] Data_from_Ivds(18Q) out————1IRQ_sampled

Title: Slave node toplevel

Revision: 20 Project: Distributed ISA
Date: 10 August 2005 Sheet 1 of 1
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Appendix D — Pictures

A Spartan 3 starter kit board reading and writing to 1/0 registers connected to one slave node FPGA on the
H4070 board. For debugging purpose only.

The Spartan 3 starter kit board.
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Left: A 144-pin Spartan 3 FPGA put in place on the H4070 board. The FPGA was later soldered by me as well.
Right: A 144-pin FPGA chip (Spartan 2).
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BCLK
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BRAM
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CPU
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EEPROM

GCLK
FIFO
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1/0
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1016
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Programmable
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IRQ
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MUX
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PCI

PECL

PLA
PLL
PoE
PROM

RAM
RST
RX
SA
SBHE
TX
VHDL
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Input Output Read Command
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System Data
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Circuit, a type of digital logic
circuit.
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